

ABA SQUARE PTY LTD

Detailed Site Investigation

15 Hilwa Street and 890, 896 and 898 Woodville Road, Villawood NSW

> E25635.E02_Rev0 16 December 2024

Document Control

Report Title:	Detailed Site Investigation;
	15 Hilwa Street and 890, 896 and 898 Woodville Road, Villawood NSW
Report Number:	E25635.E02_Rev0

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Mr Ali Tarabay	
		ABA Square Pty Ltd	
		70 Oxford Street,	
		GUILDFORD NSW 2161	
2	Original (Saved to Digital Archives)	El Australia	
	,	Suite 6.01, 55 Miller Street,	
		PYRMONT NSW 2009	

Author

Reviewer

Lee

JESNY MARSHAL		JOEL HEININGER	
Environmental Engineer		Senior Environmental Scientist	
U U		CEnvP Cert. No: 1682	
Revision	Details		Amended By
-	Draft	12 November 2024	-
0	Original	16 December 2024	-

© 2024 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

EX	KECUTIVE SUMMARY		I
1.	ΙΝΤΙ	RODUCTION	1
	1.1	Background and Purpose	1
	1.2	Proposed Development	1
	1.3	Project Objectives	1
	1.4	Scope of Work	2
	1.5	Regulatory Framework	2
2.	SITI	E DESCRIPTION	3
	2.1	Property Identification, Location and Physical Setting	3
	2.2	Surrounding Land Use	3
	2.3	Regional Setting	4
	2.4	Groundwater Bore Records and Local Groundwater Use	4
	2.5	Site Walkover Inspection	4
3.	PRE	EVIOUS REPORTS	6
4.	CO	NCEPTUAL SITE MODEL	8
	4.1	Summary of Site History	8
	4.2	NSW EPA Online Records	8
	4.3	Subsurface Conditions	9
	4.4	Potential Contamination Sources	9
	4.5	Potential Contaminants	9
	4.6	Risk Assessment	10
	4.7	Identified Receptors	11
	4.8	Summary	11
5.	FIEI	LD WORK METHODOLOGY	13
	5.1	Sampling, Analytical and Quality Plan	13
	5.2	Data Quality Objectives	13
	5.3	Data Quality Indicators	16
	5.4	Sampling Rationale	16
	5.5	Assessment Criteria	17
	5.6	Soil Sampling Methodology	18
	5.7	Groundwater Sampling Methodology	19
6.	DAT	A QUALITY ASSESSMENT	21

7.	RES	JLTS	22
	7.1	Soil	22
	7.2	Groundwater	24
8.	SITE	CHARACTERISATION	26
	8.1	Subsurface Soil Conditions	26
	8.2	Soil Impacts	26
	8.3	Groundwater Impacts	26
	8.4	Review of Conceptual Site Model	27
9.	CON	CLUSION	28
10.	REC	OMMENDATIONS	30
11.	STAT	EMENT OF LIMITATIONS	31
REF	ERE	NCES	32

Appendices

APPENDIX A – FIGURES
APPENDIX B – TABLES
APPENDIX C – PROPOSED DEVELOPMENT PLANS
APPENDIX D – GROUNDWATER BORE SEARCH
APPENDIX E – SITE PHOTOGRAPHS
APPENDIX F – FIELD DATA SHEETS AND GPR SCANNING REPORT
APPENDIX G – BOREHOLE LOGS
APPENDIX H – CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS
APPENDIX I – LABORATORY ANALYTICAL REPORTS
APPENDIX J – LABORATORY QA/QC POLICIES AND DQOS
APPENDIX K – QA/QC ASSESSMENT
APPENDIX L – STATISTICAL ANALYSIS

Executive Summary

El Australia (El) was engaged by ABA Square Pty Ltd ('the client') to conduct a detailed investigation of 15 Hilwa Street and 890, 896 and 898 Woodville Road in Villawood, New South Wales ('the site').

The site is located within the local government area of Fairfield City Council. It comprised the following properties, covering a total area of approximately 4,400m²:

- Lot 13 in Deposited Plan (DP) 220348 (15 Hilwa Street; 510m²);
- Lot 3 in DP 208677 and Lot 100 in DP 1070965 (890 and 896 Woodville Road; 3,410m²);
- Lot 1 in DP 217764 (898 Woodville Road; 480m²).

At the time of this investigation, 15 Hilwa Street and 898 Woodville Road were both low-density, residential properties. 890-896 Woodville Road was a commercial property.

The site was designated for mixed, commercial (retail) and residential (apartment) redevelopment and environmental investigation was required in support of the corresponding development application. This report complements previous (contamination and geotechnical) assessments of the site and enabled the developer to meet its obligations under the *Contaminated Land Management Act 1997* and *State Environmental Planning Policy* (*Resilience and Hazards*) 2021.

Objectives

The objectives of this detailed site investigation (DSI) were to:

- Establish the nature and degree of any soil and groundwater contamination, by means of intrusive sampling and laboratory analysis for the contaminants of potential concern;
- Provide a conclusion regarding suitability of the site for its proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

Findings

The key findings of this DSI were:

- The southern portions of the site (15 Hilwa Street and 898 Woodville Road) had continuously been used for residential purposes. The central and northern portions had been used for commercial purposes since the mid-1960s, at least, the activities including a donut shop, restaurants and piano store. The presence of a rectangular, concrete slab repatch near the mid-western boundary, suggested the presence of a former underground storage tank (UST).
- The local surroundings had consisted of residential and commercial properties since the 1940s, at least. A petrol service station was immediately adjacent (east; on 894-896 Woodville Road).
- The site was free of statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* and *Protection of the Environment Operations Act 1997.* No part of it was included on the *List of NSW Contaminated Sites Notified to the EPA.*

- No above-ground storage tank (AST) was present on the site. A ground penetrating radar (GPR) survey of the rectangular concrete patch near the western boundary of 890 and 896 Woodville Road "did not validate the parameters associated with the potential underground storage tank"; however, there were indications "suggesting the presence of an anomaly or variation in the subsurface composition", such that "the findings point to potential underground features that warrant further exploration and analysis".
- Excluding all hardstand pavements, the sub-surface of the site was generalised as a layer of poorly compacted, silty sand, gravelly sand and/or sand filling, overlying natural (residual), silty clay / gravelly clay and (weathered) shale bedrock, the latter encountered from 4.7-4.9m below ground level (BGL). The potential for acid sulphate soils (ASSs) to be present on the site was very low.
- No olfactory indication of contamination (i.e. suspicious odour) was detected during the site inspections and subsequent sampling works. No visual evidence of contamination was encountered, including fragments of fibre cement sheeting (FCS) on the ground surface.
- All laboratory analytical results for the representative fill and natural soil samples were found to comply with the adopted human health-based investigation levels applicable to residential settings with minimal soil access.
- The site was deemed to be low risk with respect to asbestos contamination.
- The local groundwater table was at 6.60-9.78 mBGL (11.91-16.28m Australian Height Datum (AHD)). The groundwater flow direction was inferred to be north-easterly, towards the concrete-lined canal, which ultimately drains into the Georges River (approximately two kilometres south west of the site).
- Local groundwater was mildly acidic (pH: 6.56-6.63), saline (electrical conductivity: 20,620-23,590 µS/cm) and non-oxidising. All laboratory analytical results for the representative samples (BH107M and BH109M) were found to comply with the adopted investigation levels, except for some dissolved metals (arsenic, cadmium, copper, nickel and zinc). The concentrations, however, were consistent with natural (background) levels in groundwater from highly urbanised areas.

Based on the findings of this DSI, and with consideration of El's *Statement of Limitations* (**Section 11**), it was concluded that gross, or widespread, contamination was not present within the site area. The land can be made suitable for the proposed (mixed-use commercial/residential) development, in accordance with *State Environmental Planning Policy* (*Resilience and Hazards*) 2021, subject to the implementation of the recommendations made in **Section 10** of this report.

1. Introduction

1.1 Background and Purpose

El Australia (El) was engaged by ABA Square Pty Ltd ('the client') to conduct a detailed investigation of 15 Hilwa Street and 890, 896 and 898 Woodville Road in Villawood, New South Wales (henceforth referred to as 'the site').

The site is located within the local government area (LGA) of Fairfield City Council (**Figure 1**, **Appendix A**). It comprised the following properties, covering a total area of approximately $4400m^2$ (**Figure 2**, **Appendix A**):

- Lot 13 in Deposited Plan (DP) 220348 (15 Hilwa Street; 510 m²);
- Lot 3 in DP 208677 and Lot 100 in DP 1070965 (890 and 896 Woodville Road; 3,410 m²);
- Lot 1 in DP 217764 (898 Woodville Road; 480 m²).

At the time of this investigation, 15 Hilwa Street and 898 Woodville Road were both low-density, residential properties, each containing a house. 890-896 Woodville Road was a commercial property (formerly *Gospel Pianos*), being used as a storage space for construction materials, including floor and wall tiles.

The site was designated for mixed, commercial (retail) and residential (apartment) redevelopment and environmental investigation was required in support of the corresponding development application. This report complements previous (contamination and geotechnical) assessments of the site and enabled the developer to meet its obligations under the *Contaminated Land Management Act 1997* and *State Environmental Planning Policy* (*Resilience and Hazards*) 2021.

1.2 Proposed Development

Based on the supplied plans (**Appendix C**), the proposed development involved demolition of all existing structures, followed by the construction of a ten storey, mixed commercial (retail) and residential (apartment) building, overlying three levels of common basement. Commercial units were designated for the ground floor, with residential apartments specified for the upper (nine) levels.

The basement was to extend across the majority of the site area, requiring bulk excavation to a maximum depth of 12.8 metres below ground level (mBGL), although locally deeper excavations would be needed for footings, service trenches, crane pads and lift overrun pits.

A nine meter set back along the northern (Howatt Street) boundary was excluded from the bulk excavation, this strip being dedicated for landscaping.

1.3 Project Objectives

The objectives of this detailed site investigation (DSI) were to:

- Establish the nature and degree of any soil and groundwater contamination, by means of intrusive sampling and laboratory analysis for the contaminants of potential concern (COPCs);
- Provide a conclusion regarding suitability of the site for its proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

1.4 Scope of Work

To achieve the above objectives, the following scope of work was completed:

- A review of relevant topographical, geological and soil landscape maps for the project area;
- A review of the previous environmental reports issued for the site;
- Surveying of existing underground services on-site, utilising *Before-You-Dig* plans and ground penetrating radar (GPR) scanning, the latter operated by a licensed locator;
- A site walkover inspection;
- Construction of test boreholes at sixteen locations (BH101-BH116), distributed according to a mixed, targeted and systematic grid pattern across the site (allowing for structural obstacles and occupied premises);
- Multiple level sampling of fill and natural soils at each of the test boreholes;
- In-field screening of soil headspace samples for volatile organic compounds (VOCs), using a portable photoionisation detector (PID);
- Surface soil sampling at seven additional locations, to broaden the screening for asbestoscontaining materials (ACMs);
- Installation of a groundwater monitoring well in three of the test bores (BH107M, BH109M and BH113M), followed by the completion of a groundwater monitoring event (GME);
- Laboratory analysis of selected soil and groundwater samples for the COPCs, as determined from the conceptual site model (CSM) and field observations; and
- Data interpretation and reporting.

This report documents the desk study findings, the CSM, data quality objectives, sampling methodologies and laboratory analytical results. It also provides a record of observations made during the site walkover inspections, borehole logs and a discussion of the results in regards to potential risks to human health and the environment. It concludes with a statement concerning the suitability of the site for the proposed (mixed commercial / residential) development.

1.5 Regulatory Framework

The following regulatory framework and guidelines were considered during this DSI:

- Contaminated Land Management Act 1997 (the CLM Act 1997);
- Environmental Planning and Assessment Act 1979 (the EP&A Act 1979);
- Protection of the Environment Operations Act 1997 (the POEO Act 1997);
- State Environmental Planning Policy (Resilience and Hazards) 2021;
- Fairfield Local Environmental Plan 2013;
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999;
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- NSW EPA (2020) Consultants Reporting on Contaminated Land;
- NSW EPA (2022a) Sampling Design Guidelines Part 1 Application; and
- NSW EPA (2022b) Sampling Design Part 2 Interpretation.

2. Site Description

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in Table 2-1.

Table 2-1 Site Identification		
Attribute	Description	
Street Address	15 Hilwa Street and 890, 896 and 898 Woodville Road, Villawood NSW	
Location and Description	 The site is bound by: North: Howatt Street, followed by commercial properties and Hilwa Park; East: Apex Service Station (894-896 Woodville Road), followed by Woodville Road and residential properties; South: residential properties, followed by Kirrang Avenue; and West: Hilwa Street, followed by residential properties. 	
Geographical Coordinates	North-western corner of the site (GDA2020-MGA56): Easting: 312792.702; Northing: 6248923.659 (Source: http://maps.six.nsw.gov.au)	
Area	Approximately 4,400 m ²	
Cadastral Identification	Lot 13 in DP 220348 (15 Hilwa Street; 510m ²) Lot 3 in DP 208677 and Lot 100 in DP 1070965 (890 and 896 Woodville Road; 3410m ²) Lot 1 in DP 217764 (898 Woodville Road; 480m ²)	
LGA	Fairfield City Council	
State Survey Marks	Permanent survey marks PM3348 D and PM6921 are on the corner of Howatt Street and Woodville Road (north eastern site corner). (Source: <u>http://maps.six.nsw.gov.au</u>)	
Zoning	CA: Complex Area E1: Local Centre RE1: Public Recreation (<i>Fairfield Local Environmental Plan 2013</i>)	

2.2 Surrounding Land Use

The site is situated within an area of mixed uses. Local sensitive receptors within close proximity to the site (<500m) are identified in **Table 2-2**.

Table 2-2	Surrounding Land Use	
Direction	Land Use Description	Sensitive Receptors
North	Commercial properties	Building occupants (15m north)
	Hilwa Park	Ecological receptors (40m north-west)
South	Residential properties	Residents (immediately adjacent)
East	Commercial properties (service station)	Building occupants (immediately adjacent)
	Residential properties	Residents (approximately 30m east)
West	Residential properties	Residents (immediately adjacent)

15 Hilwa Street and 890, 896 and 898 Woodville Road, Villawood NSW ABA Square Pty Ltd

2.3 Regional Setting

Regional topography, geology and soil landscape information is summarised in **Table 2-3**.

Table 2-3	Regional	Setting	Information
-----------	----------	---------	-------------

Attribute	Description
Topography	Gently down sloping towards the north east. Site surface elevations range from approximately 24 metres Australian Height Datum (mAHD) at the south western boundary, to approximately 22 mAHD at the north eastern boundary. Source: https://meconemosaic.au/
Drainage	Likely to be consistent with the general slope of the site. Surface runoff is expected to be collected in stormwater pits on Woodville Road and Howatt Street, then piped to the municipal drain system.
Geology	With reference to the Geological Survey of New South Wales / Department of Minerals and Energy (GS / DME, 1991) <i>Penrith 1:100,000 Geological Series Sheet 9030</i> , the site is underlain by Bringelly Shale (<i>Rwb</i>) of Wianamatta Group, consisting of shale, carbonaceous claystone, laminate, fine to medium grained lithic sandstone, rare coal and tuff.
Soil Landscape	The Soil Conservation Service of NSW <i>Soil Landscapes of the Sydney 1:100,000</i> Sheet (Chapman and Murphy, 1989) indicates that the site overlies a Richmond (<i>n</i>) alluvial landscape, characterised by quaternary-age terraces of the Nepean and Georges Rivers, which are mainly flat (slopes <1%), with splays and levees providing local relief of <3m.
Acid Sulfate Soil (ASS) Risk	The site is not mapped for ASS on the <i>Fairfield Local Environmental Plan 2013</i> . The <i>Liverpool Acid Sulfate Soil Risk Map</i> (1:25,000 scale; Murphy, 1997) indicates that the site lies within an area having <i>No Known Occurrence</i> of acid sulfate soil. Based on the site's elevation (>20 mAHD) and map information, the presence of ASS on the site was considered to be unlikely and further investigation was unwarranted.
Nearest Surface Water Feature	A concrete-lined stormwater canal, located approximately 755 m north east.
Groundwater Flow Direction	Anticipated to be north easterly, towards the concrete-lined canal, which ultimately drains into the Georges River (approximately 2 km south west of the site).

2.4 Groundwater Bore Records and Local Groundwater Use

An online search for groundwater bores registered with WaterNSW was conducted by EI on 30 September 2024 (https://realtimedata.waternsw.com.au/water.stm; **Appendix D**). There were no registered bores within a 500 metre radius of the site, indicating that the local groundwater resource was not being (heavily) utilised. In addition, there were no receptors between the site and the concrete-lined stormwater canal, located approximately 755 m to the north east.

2.5 Site Walkover Inspection

Observations were recorded by EI during walkover inspections of the site, conducted on 10 and 30 October 2024. These observations are summarised below and photographs taken during the inspection are presented in **Appendix E**.

- The site was comprised of two residential buildings (located at 15 Hilwa Street and 898 Woodville Road) and a commercial building (located at 890 and 896 Woodville Road; occupied by *Gospel Pianos*), with associated vehicle parking and storage areas.
- The surroundings consisted of commercial and residential properties. An Apex Service Station was adjacent to the site, within the inner portion of the U-shape, its address being 894-896 Woodville Road.
- The site surface was flat, with a gentle down slope towards the north-east / east.

Page | 5

- 15 Hilwa Street (Lot 13 in DP 220348) formed the south-western corner of the site. It contained a single storey, residential building.
 - The gardens fronting Hilwa Street were in fair condition, with no signs of plant distress.
 - The paved driveway and entrance in front of the property were in good condition, with no cracking observed.
- 898 Woodville Road (Lot 1 in DP 217764) formed the south eastern corner of the site. It contained a single storey, residential building.
 - The gardens fronting Woodville Road were in good condition, with no signs of plant distress.
 - The concrete paved driveway and parking area in the front of the property were in fair condition, with some cracking observed.
- 890 and 896 Woodville Road (Lot 3 in DP 208677 and Lot 100 in DP 1070965) was a U-shaped block of land, covering the central and northern portions of the site. This area contained a single storey, commercial (warehouse) building with basement level for storage and associated vehicle parking and storage areas on asphalt hardstand.
 - Garden areas at the front (facing Woodville Road) and within narrow strips around the perimeter of the property were in good condition with no signs of plant distress.
 - The asphalt hardstand was in poor condition, with extensive cracking and portions replaced with concrete slabs. A rectangular concrete patch was noted along western boundary, suggesting the possible presence (or former presence) of an underground storage tank (UST).
 - Boxed floor tiles and a stockpile of timber pallets were present in the western central portion of this property.
 - A strip drain, blocked by soil, was in the north eastern corner of the property.
- No visual evidence of groundwater wells was observed on the site.
- No suspicious odour, or visual evidence of gross contamination, was observed on any part of the site during the inspections.
- No above-ground storage tank (AST) was present on the site.
- No visual or olfactory (hydrogen sulphide) evidence of actual or potential ASS was encountered.

Surveying of Underground Services

The site inspection of 30 October 2024 coincided with a survey for existing underground services, utilising *Before-You-Dig* plans and ground penetrating radar (GPR) scanning, the latter performed by Smartscan Locators Pty Ltd (SL). Refer to **Appendix F** for the corresponding SL *Site Report*, dated 30 October 2024.

With respect to the rectangular concrete patch near the western boundary of 890 and 896 Woodville Road, the SL report stated:

- The multiple scans "did not validate the parameters associated with the potential underground storage tank"; however, there were
- indications "suggesting the presence of an anomaly or variation in the subsurface composition"; such that
- "the findings point to potential underground features that warrant further exploration and analysis".

3. Previous Reports

Previous investigations of the site were documented under the following reports:

- EI (2022a) Preliminary Site Investigation; 15 Hilwa Street and 890, 896 & 898 Woodville Road, Villawood NSW (EI Australia Report E25635.E01_Rev0, dated 27 June 2022); and
- EI (2022b) *Preliminary Geotechnical Investigation;* 15 *Hilwa Street, 890, 896 & 898 Woodville Road, Villawood NSW* (EI Australia Report E25635.G01, dated 27 June 2022).

A summary of the relevant information is provided in Table 3-1.

Stage	Summary	
Preliminary Site Investigation (EI, 2022a)		
Objective	To appraise the potential for site contamination.	
Scope of Work	 The investigation included: Desktop review of site (use) history, based on land title deeds, aerial photographs, property files archived by Fairfield City Council and a search for dangerous goods licencing records with SafeWork NSW; A site inspection; and Presentation of a preliminary CSM. 	
Key Findings	 The site was occupied by two residences and a commercial (warehouse) building, with storage sheds and vehicle parking areas (across the central and northern portions). The site had a history of commercial and residential land uses. The commercial activities undertaken at the site included a donut shop, restaurants and a piano store. The surrounding areas also consisted of mixed commercial and residential properties, with a petrol service station immediately adjacent to the east (cross- to down- gradient). The service station was in operation at the time of the investigation. The site was free of statutory notices and licensing agreements issued by the Environment Protection Authority of New South Wales (EPA) under the Contaminated Land Managemen Act 1997 and Protection of the Environment Operations Act 1997. The site was not included on the List of NSW Contaminated Sites Notified to the EPA. The SafeWork NSW database search did not locate any records pertaining to the on-site storage of dangerous goods (including under and above ground storage facilities). The preliminary CSM established there was "moderate" potential for contamination to exist on the land, as a result of: The importation of fill of unknown origin and quality, used to grade the site surface and/or backfill excavated areas; Deposition of pazardous materials, such as absestos and lead, from building fabrics; Application of pesticides, particularly around building footings; Spills and leaks from parked vehicles; and Migration of mobile contaminants, both from on-site and adjacent commercial activities, in particular petroleum hydrocarbons from the (former) use of fuel storage / dispensing facilities and automotive servicing. 	
Conclusion and Recommendation	El concluded that there was potential for site contamination. It was recommended that further (detailed) investigation be conducted.	

 Table 3-1
 Summary of Previous Reports

Stage	Summary		
Preliminary Geote	Preliminary Geotechnical Investigation (El, 2022b)		
Objective	To assess the likely sub-surface conditions.		
Scope of Work	 The investigation included: Review of relevant geological and soil landscape maps; Review of documents associated with previous and proposed development of the site; Site walkover inspection; and Data interpretation and reporting. 		
Key Findings	The conceptual ground model inferred fill materials to be present at the site, overlying residual silty clay soils and (weathered) shale bedrock. Groundwater was anticipated to be between 5-6 mBGL.		
Recommendations	El recommended that an intrusive investigation be conducted, involving at least six boreholes cored to bedrock, with three of these being converted into groundwater monitoring wells, to allow the completion of pump out tests.		

4. Conceptual Site Model

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation, EI developed a CSM as part of the contamination appraisal, assessing plausible linkages between potential contamination sources, migration pathways and receptors. The CSM provided a framework for identifying data gaps in the existing site characterisation (i.e. assisted in determining the scope of the DSI).

4.1 Summary of Site History

Based on the findings from the preliminary investigation (**Section 3**), the southern portions of the site (15 Hilwa Street and 898 Woodville Road) had continuously been used for residential purposes. The central and northern portions had been used for commercial purposes since the mid-1960s, at least, the activities including a donut shop, restaurants and piano store. The presence of a rectangular, concrete slab repatch near the mid-western boundary, coupled with the GPR scanning of this area (**Section 2.5**), suggested the presence of a former UST.

The local surroundings had consisted of residential and commercial properties since the 1940s, at least. A petrol service station was immediately adjacent (east; on 894-896 Woodville Road).

4.2 NSW EPA Online Records

Searches of the public registers maintained by the NSW EPA for statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* (CLM Act 1997) and *Protection of the Environment Operations Act 1997* (POEO Act 1997) were repeated by EI for this DSI.

Record of Notices Under Section 58 of CLM Act 1997

An on-line search of the contaminated land public record was conducted on 30 September 2024. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the CLM Act 1997;
- Notices available to the public under Section 58 of the CLM Act;
- Approved voluntary management proposals under the CLM Act 1997 that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site audit statements provided to the NSW EPA under Section 53B of the CLM Act 1997 that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by the NSW EPA under Section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (EHC Act 1985).

The search confirmed that neither the site, nor the surrounding lands within close proximity (≤500m), were subject to any regulatory notices relevant to the above legislations.

List of NSW Contaminated Sites Notified to EPA

A search through the *List of NSW Contaminated Sites Notified to the EPA* under Section 60 of the CLM Act 1997 was conducted on 30 September 2024. This list is maintained by the EPA and includes properties on which contamination has been identified, but not deemed to be impacted significantly enough to warrant regulation.

The search confirmed that neither the site, nor the surrounding lands within close proximity (≤500m) were notified as contaminated to the NSW EPA (i.e. they were not included in the list).

A search of the *Protection of the Environment Operations Act 1997* public register was conducted on 30 September 2024. This public register contains records related to environmental protection licences, applications, notices, audits, pollution studies and reduction programs. The search confirmed that the site was not subject to any licensing agreements / notices / programs relevant to this legislation.

Note: The closest property on the register was KNC Haulage Pty Ltd at 2 Urana Street, Villawood (approximately 2,175 m north east of the site), which was subject to a penalty notice in August 2000.

4.3 Subsurface Conditions

The predicted ground model is summarised in Table 4-1.

Unit	Material	Comment
1	Hardstand	A layer of concrete hardstand and/or road-base, in paved portions of the site.
2	Fill	Inferred to be poorly compacted, sand-, clay- and gravel- dominated filling. Possibly deepest beneath existing structures and in concrete (repatched) areas.
3	Residual Soils	Inferred as silty clays, medium to high plasticity, typically firm to very stiff, grading into extremely weathered bedrock.
4	Bedrock	Inferred as Bringelly Shale, expected to be of very low strength and distinctly weathered initially, with the strength generally increasing and weathering decreasing with depth.
5	Groundwater	The depth to groundwater is inferred to be 5-6 mBGL.

 Table 4-1
 Conceptual Ground Model

4.4 Potential Contamination Sources

The potential contamination sources were identified as follows:

- The importation of fill of unknown origin and quality, used to grade the site surface and/or backfill excavated areas;
- Deposition of hazardous materials, including ACMs, lead-based paints and other metals, from building fabrics;
- Application of pesticides, particularly around building footings;
- Spills and leaks from parked vehicles; and
- Migration of mobile contaminants, both from on-site and adjacent commercial activities, in particular petroleum hydrocarbons from the (former) use of fuel storage / dispensing facilities and automotive servicing.

4.5 Potential Contaminants

The Potential contaminants for this site were considered to be:

- Soil:
 - Priority Metals (PMs; arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc);
 - Total Recoverable Hydrocarbons (TRHs);
 - Volatile Organic Compounds (VOCs); including
 - Benzene, Toluene, Ethyl-benzene and Xylenes (BTEX);

- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine and Organophosphorus Pesticides (OCPs / OPPs);
- Polychlorinated Biphenyls (PCBs);
- Phenols; and
- Asbestos.
- Groundwater:
 - PMs;
 - TRHs;
 - VOCs (including BTEX);
 - PAHs;
 - Phenols; and
 - Per- and Poly- Fluoroalkyl Substances (PFAS).

Note: The potential for any other emerging chemical of concern to be present on-site, such as dioxins and organotin compounds, was considered to be very low.

4.6 Risk Assessment

An assessment of the potential contamination risks for the site is summarised in Table 4-2.

Potential Source	Impacted Medium	COPC	Risk of Contamination
Importation of fill of unknown origin and quality	Soil	PM, TRH, BTEX, PAH, OCP, OPP, PCB, asbestos	Moderate Filling is expected to be present.
Hazardous building materials	Near surface soil	PM (lead in particular), asbestos	Low to Moderate Buildings have been present since 1940s- 1960s, and thus could include ACMs and lead-based paints.
Application of pesticides	Surface soil (building footings)	PM, OCP, OPP	Low If present, will be limited to shallow, building footprints. Metals and OCP highly persistent in soils though.
Leakage from vehicles	Surface soil	PM, TRH, VOC (including BTEX), PAH, phenols	Low Contamination, if present, likely to be localised and restricted to surface or shallow soil horizons. Cracking was observed in the parking areas, however.
Migration from on- and off- site sources	Soil (adjacent to USTs) Groundwater	PM, TRH, VOC (including BTEX), PAH, phenols, PFAS	Moderate Petrol station directly adjacent (east) of the site, which is a cross- to down- gradient area. A rectangular, concrete slab repatch near the mid-western boundary suggested the potential presence of a former UST on- site.

 Table 4-2
 Assessment of Potential Contamination Risk

4.7 Identified Receptors

The following potential receptors of site contamination were identified:

- Current and future site users / occupiers;
- On-site demolition, excavation and construction workers (during future redevelopment);
- Users of the adjacent land during future redevelopment works;
- Future intrusive (maintenance) workers;
- Ecological receptors in areas of exposed soil; and
- Ecological communities in local groundwater and Georges River, including its tributaries.

4.8 Summary

Refer to **Table 4-3** for an overview of the CSM, identifying the potential contamination sources, exposure pathways and human and environmental receptors.

The CSM established there was potential for contamination to be present within the site area and that the risks to human and environmental receptors posed by the identified contaminant sources were such that further (detailed / field-based) investigation was warranted.

Table 4-3 Conceptual Site Model

Potential Source	Impacted Medium	Contaminants of Potential Concern	Transport Mechanism	Exposure Pathway	Potential Receptor	Source-Pathway-Receptor (SPR) Linkage
Imported fill materials Hazardous building materials	Soil	PM, TRH, VOC (BTEX), PAH, OCP, OPP, PCB, phenols, asbestos	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment	Ingestion Dermal contact Inhalation of particulates	Current and future site users Demolition / excavation / construction workers Adjacent site users Future intrusive workers	Potentially complete
Application of pesticides			Atmospheric dispersion from soil to outdoor and indoor air spaces	-		
Leakage from vehicles Migration from on- and off- site sources			Volatilisation of contamination from soil and diffusion to indoor air spaces	Inhalation of vapours	_	
			Roots absorption of bioavailable compounds from impacted soils	Biota uptake	Ecological receptors in areas of exposed soil / landscaping	Potentially complete
	Groundwater	PM, TRH, VOC (BTEX), PAH, phenols, PFAS	Volatilisation of contamination from groundwater to indoor or outdoor air spaces (onsite and offsite)	Inhalation of vapours	Current and future site users Demolition / excavation / construction workers Adjacent site users Future intrusive workers	Potentially complete
			Disturbance of surface soils during site redevelopment, future site maintenance and future use of the site post redevelopment	Ingestion Dermal contact	Demolition / excavation / construction workers Future intrusive workers	_
			Migration of dissolved phase impacts in groundwater via diffusion and advection	Biota uptake	Georges River and tributaries	Potentially complete

Footnotes:

The overall potential for contamination to exist on the site was deemed to be moderate

Human-health risks associated with all Source-Pathway-Receptor (SPR) linkages considered to be low to moderate with the site its current (paved / built) state Site workers during demolition, excavation and construction, as well as future building / service maintenance, assumed to use personal protective equipment (PPE), as per SafeWork NSW regulations; hence, eliminating SPR linkage

5. Field Work Methodology

5.1 Sampling, Analytical and Quality Plan

A pre-conceived sampling, analytical and quality plan (SAQP) was required, to ensure that the data collected during the DSI were representative, providing a robust basis for land suitability decisions. The SAQP for this investigation included description of the following:

- Data quality objectives (DQOs), restating the objective of the investigation, then articulating the perceived goals of the sampling and analysis components, as well as the rationale behind their conception and means of their attainment;
- A quality assurance / quality control (QA/QC) program specific for the data set; defining the
- Data quality indicators (DQIs), corresponding to the QC measures integrated into the sampling and analysis components of the investigation phase;
- Sampling methodology, including description of the (intended) sampling points, the media sampled at each point and details of any in-field screening;
- Procedures for sample handling, preservation and storage; and
- Identification of the required laboratory analyses.

5.2 Data Quality Objectives

In accordance with the NEPC (2013) *Schedule B2 Guideline on Site Characterisation*, the USEPA (2006) *Data Quality Assessment* and EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, DQOs were developed by the EI investigation team, following the seven step process endorsed by the NEPC and EPA (**Table 5-1**). The appropriate levels of data quantity and quality needed for the specific requirements of the project were thereby established.

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps	Details
1. State the Problem Summarise the contamination problem that required environmental data.	The site was designated for redevelopment, involving the demolition of existing structures, followed by the construction of a multi-storey, mixed- used tower building, overlying a three to four level basement facility (Section 1.2). The basement would require bulk soil excavation to a maximum depth of 12.8 mBGL.
·	The CSM indicated there was potential for contamination. Further (detailed) investigation required, by way of soil and groundwater sampling, with analyses for the contaminants of potential concern (COPCs).
	The environmental (contamination) investigations were required by Fairfield Council, in support of the development application. Also necessary in order for the developer to meet obligations under State Environmental Planning Policy (Resilience and Hazards) 2021 and the Contaminated Land Management Act 1997.
2. Identify the Goal of the Study	Based on the objectives outlined in Section 1.3, the decisions for this DSI concerned the following questions:
(Identify the decisions)	Has the nature, extent and source of any soil and/or groundwater impacts on-site been defined?
Identify the decisions that needed to be	What impact do the sub-surface conditions have on the fate and transport of any contaminants that may be present?
made on the contamination problem and the collated data.	 Does the level of impact coupled with the fate and transport of potential contaminants represent an unacceptable risk to identified human and/or environmental receptors on- or off- site?
	Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary?
	If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy?
	At the end of the DSI, a conclusion had to be made regarding whether the site was suitable for the proposed redevelopment, or if additional assessment / remedial works were required to make the site suitable.
3. Identify Information Inputs (Identify	Inputs to the decision making process included:
inputs to decision)	 The proposed development plans and land use;
Identify the information needed to	 Review of previous investigations at the site;
support any decision relating to the contamination status of the site.	 National and NSW EPA guidelines endorsed under the NSW Contaminated Land Management Act 1997;
	 Observations obtained from the intrusive (sampling) components, in locations and to depths appropriate for assessment purposes; and Laboratory analysis of selected samples for the COPCs.
4. Define the Boundaries of the Study	Lateral – The proposed development area, as shown on Figure 2, Appendix A.
Specify the spatial and temporal limits to	Vertical – From the ground surface, down to the deepest depth of borehole drilling.
the current investigation.	Temporal – Results were valid on the day of data / sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.
5. Develop the Analytic Approach	The decision rules for the investigation were:
(Develop a decision rule) Specify the decision rule, in the form of a	If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria, then assess the need to further investigate the extent of impacts on-site.
simple statement that determined a logical basis for the conclusion of the investigation.	 Decision criteria for QA/QC measures are defined by the DQIs in Table 5-2.

DQO Steps	Details		
6. Specify Acceptance Criteria (Specify limits on decision errors)	Specific limits for this project were in accordance with National and EPA guidance, which covered standard procedures for field sampling and handling, as well as the indicators of data quality. The specific criteria were:		
Specify the acceptable limits on decision errors, which were established (defined)	 The null hypothesis for the investigation was that the concentration of each COPC exceeded relevant land use criteria across the site. Acceptance of site suitability was based on the probability that: 		
by the inherent uncertainties in the data.	 Individual COPC results satisfied (were below) the corresponding assessment criteria; 		
	 The standard deviation of the data set for each COPC was less than 50% of the relevant criterion; and 		
	 No single result exceeded the corresponding criterion by 250% or more. 		
	 Concentrations of COPCs that were below the assessment criteria were regarded as indicative of suitability for the proposed land use(s). 		
	If contaminant concentrations exceeded the adopted criteria, further investigation / remediation was considered prudent.		
7. Develop the Plan for Obtaining	In order to identify the most resource-effective sampling and analysis design and satisfy the DQOs:		
Data (Optimise the study design) Identify the most resource-effective sampling and analysis design, to satisfy the DQOs of the investigation.	 Soil sampling was conducted at sixteen test bores (BH101-BH116), distributed according to a mixed, targeted and systematic grid pattern. Boreholes BH109M, BH111 and BH114 were targeted downslope of the possible former UST area, being the rectangular concrete slab in the western portion of 890 and 896 Woodville Road. Boreholes BH107M, BH112, BH115 and BH116 were in the vicinity of infrastructure associated with the adjacent service station (i.e. the expected location of the tank farm and workshop). Borehole BH113M represented the point of lowest site elevation (approximately 22 mAHD), where mobile contaminants would migrate towards. Remaining bores completed the/a grid pattern. 		
	 An upper soil profile sample was collected at each borehole location and tested for the potential contaminants, to assess the conditions of the fil layer, and impacts from activities at ground level. 		
	 Surface fill sampling was completed at seven additional locations, to broaden the screening for ACMs. 		
	 Several natural soil samples were analysed for metals, TRH, BTEX, VOCs and PAH. These samples were selected on field observations (including visual and olfactory evidence). 		
	 Three groundwater monitoring wells were installed, with a GME completed. 		
	 Representative soil and groundwater samples were laboratory analysed for the COPCs. 		
	 Review of the results was undertaken to determine if further sampling was warranted. 		
	Prior to commencement of the field work, written instructions were issued to the personnel assigned for their completion. These included standard operating procedures (SOPs), which were drafted with reference to NEPC and EPA guidelines. All subsequent field works were performed in accordance with these SOPs.		

5.3 Data Quality Indicators

To ensure the investigation data were acceptable, the quality indicators outlined in **Table 5-2** were applied. Assessment of data quality is presented in **Section 6**.

Table 5-2 Data Quality Indicators

QA/QC Component	Data Quality Indicator(s)		
Precision A quantitative measure of the variability (or reproducibility) of data	 Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Precision was deemed acceptable if RPDs were found dominantly to be less than 30%. RPDs that exceeded this range were considered acceptable where: Results were less than 10 times the limit of reporting (LOR); Results were less than 20 times the LOR and the RPD was less than 50%; or Heterogeneous materials or volatile compounds were encountered. 		
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets; Trip blank and spike samples; Field / method blanks; Matrix spike sample sets; and Laboratory control samples. 		
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of RPDs for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 		
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the DSI were considered complete upon confirmation that: SOPs for sampling protocols were adhered to; and All chain of custody (COC) documentation was properly completed. It could then be determined whether the generated data were sufficient for the purposes of the land use assessment. 		
Comparability The confidence that data are equivalent for each sampling event	Issues of comparability were reduced through adherence to SOPs and regulator- endorsed or published guidelines and standards on each data gathering activity. In addition, the data were collected by experienced samplers and NATA-accredited laboratory methods were employed for all testing programs.		

5.4 Sampling Rationale

With reference to the CSM described in **Section 4**, as well as the DQOs in **Table 5-1**, soil and groundwater sampling were planned in accordance with the following rationale.

 Fill and natural soils were sampled at 16 test bore locations (BH101-BH116), distributed according to a mixed, targeted and systematic grid pattern across the site (allowing for structural obstacles and occupied premises).

This number of locations complied with the minimum number of points recommended under Table 2 of EPA (2022a) Sampling Design Part 1 - Application for investigation of an area of 4,400 m².

Boreholes BH109M, BH111 and BH114 were targeted downslope of the possible former UST area (being the rectangular concrete slab in the western portion of 890 and 896 Woodville Road). Boreholes BH107M, BH112, BH115 and BH116 were in the vicinity of infrastructure associated with the adjacent service station (i.e. the expected location of the tank farm and workshop). Remaining bores completed the/a grid sampling pattern.

Borehole BH113M represented the point of lowest site elevation (approximately 22 mAHD), where mobile contamination would most likely migrate towards.

In-field screening of soil headspace samples for VOCs was performed using a portable PID.

Surface soil sampling at seven additional locations was completed, to broaden the screening for ACMs.

- The drilling of bores BH107M, BH109M and BH113M was extended to 8.6 mBGL, 8.1 mBGL and 10 mBGL, respectively (all encountering refusal in shale bedrock), enabling the installation of a groundwater monitoring well in each. A GME was subsequently completed.
- Laboratory analysis of representative soil and groundwater samples was commissioned for the identified COPCs.

5.5 Assessment Criteria

The site was designated for mixed, commercial (retail) and residential (apartment) redevelopment. The proposed tower building would overly a three level, common basement facility (Section 1.2 and Appendix C).

The assessment criteria adopted for this DSI were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for the site, the likely exposure pathways, and the identified potential receptors. They are defined in **Table 5-3**.

For the purposes of this investigation, the adopted soil assessment criteria are referred to as *Soil Investigation Levels* (SILs) and the adopted groundwater assessment criteria are referred to as *Groundwater Investigation Levels* (GILs).

Medium	Criteria	Rationale
Medium Soil	Criteria NEPC (2013) HILs, HSLs, EILs, ESLs and Management Limits	 Health-based Investigation Levels (HILs) NEPC (2013) <i>HIL B</i> thresholds for residential settings with minimal opportunities for soil access. Health-based Screening Levels (HSLs) NEPC (2013) <i>HSL A&B</i> thresholds for vapour intrusion at low to high density residential settings, to assess potential human health impacts from residual petroleum hydrocarbons, including BTEX and naphthalene: applied to areas outside the proposed basement footprint. NEPC (2013) <i>HSL D</i> thresholds for vapour intrusion at commercial and industrial settings, to assess potential human health impacts from residual petroleum hydrocarbons, including BTEX and naphthalene: applied to areas outside the proposed basement footprint. NEPC (2013) <i>HSL D</i> thresholds for vapour intrusion at commercial and industrial settings, to assess potential human health impacts from residual petroleum hydrocarbons, including BTEX and naphthalene: applied to the proposed basement footprint. Fine grained soil criteria were applied, as the material type (clay) observed at the site. Asbestos Health-based Screening Levels:
		 Bonded ACM: HSL B across building footprint; No visible ACM on the soil surface for all parts of the site;
		 Asbestos presence/absence screening: <0.01% w/w.
		Ecological Investigation / Screening Levels (EILs / ESLs)
		Results for samples collected from areas of proposed soil retention (i.e. outside the basement footprint) were compared against NEPC (2013)

Table 5-3 Adopted Investigation Levels for Soil and Groundwater

Medium	Criteria	Rationale
		EILs/ESLs applicable to fine grained soil in urban residential settings, to assess the potential impact on ecological receptors. The derived EIL criteria were based on the addition of a site-specific, added contaminant limit and the ambient background concentration for a high traffic NSW suburb. Management Limits for Petroleum Hydrocarbons Where the HSLs and/or ESLs for TRH fractions (F1-F4) were exceeded, sample results were compared against the NEPC (2013) Management Limits, to assess potential site management issues such as fire and explosive hazards and adverse effects on buried infrastructure.
Groundwater	ANZG (2018) GILs for Freshwaters and NEPC (2013)	Groundwater Investigation Levels (GILs) for Freshwaters ANZG (2018) provides GILs for typical, slightly-moderately disturbed aquatic ecosystems. The trigger values for 95% level of protection of
	Groundwater HSLs	aquatic ecosystems were adopted, with the 99% level values being applied for bio-accumulative analytes.
		Health-based Screening Levels (HSLs)
		The NEPC (2013) groundwater HSLs for vapour intrusion were adopted, used to assess potential human health impacts from residual petroleum hydrocarbons, including BTEX and naphthalene:
		Areas outside the basement footprint: HSL A/B thresholds for low to high density residential settings.
		Areas within the basement footprint: HSL D thresholds for commercial / industrial settings.

5.6 Soil Sampling Methodology

The soil sampling methodology is described in **Table 5-4**. The borehole locations are presented in **Figure 2**, **Appendix A**.

Table 5-4	Summary	of Soil	Sampling	Methodology
-----------	---------	---------	----------	-------------

Activity	Details
Fieldwork	Borehole drilling and soil sampling works were conducted on 10 and 30 October 2024. Soil sampling was conducted at sixteen boreholes (BH101 to BH116), and seven additional surface fill locations (SS1 to SS7).
Service locating	A GPR survey was conducted on 30 October 2024, within the western portion of the site, targeting the suspected former UST area (see Section 2.5 and Appendix G).
Drilling Method and Depth	The test boreholes BH101 to BH113M were drilled using a mechanical, track-mounted rig, fitted with solid flight augers (0.35-10 mBGL). Boreholes BH114 to BH116 were drilled using a hand auger (2.6 mBGL, 2.5 mBGL and 2.6 mBGL, respectively). The corresponding borehole logs are presented in Appendix G .
	Seven surface fill samples (0.05-0.1 mBGL) for additional ACM screening were collected by manual method (trowel and mixing bowl).
	Notes: Boreholes BH109M, BH111 and BH114 were located downslope of the possible former UST area (being the rectangular concrete slab in the western portion of 890 and 896 Woodville Road). Boreholes BH107M, BH112, BH115 and BH116 were located in the vicinity of infrastructure associated with the adjacent service station (i.e. the expected location of the tank farm and workshop).
	BH113M represented the point of lowest site elevation (approximately 22 mAHD), where mobile contamination would most likely migrate towards.
Soil Logging	Drilled / examined soils were described in-field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017.
Field Observations	Field observations such as inclusions, odour and colour in/of recovered soil samples were noted in the borehole logs (Appendix G).

Activity	Details
In-Field Soil Vapour Screening	Screening for VOCs in soil headspace samples was conducted using a pre-calibrated PID with a 10.6mV ionisation lamp. Refer to Appendix F for the calibration certificate.
Soil Sampling	Soil samples were collected by dry grab method from the auger or site surface (the sampler wearing dedicated nitrile gloves) and placed into laboratory-supplied, glass jars and zip-lock, plastic bags (the latter for asbestos and PID screening samples). Blind and split field duplicates were separated from the primary samples and placed into dedicated glass jars. At each location, aliquots of soil were placed into separate zip-lock bags for laboratory asbestos analysis and in-field VOC screening.
Decontamination Procedures	New sets of nitrile sampling gloves were used per sample. Sampling equipment (i.e. auger, trowel and mixing bowl) was scrubbed and washed with a mixture of <i>Alconox</i> and potable water (1/20) until free of all residual materials, ther rinsed with potable water.
Management of Soil Cuttings	Soil cuttings were used to backfill the completed boreholes.
Sample Preservation and Transport	Samples were stored in an insulated chest (containing ice packs), whilst on-site and in transit to the contracted laboratories. Primary soil samples were transported to SGS Australia Pty Ltd (SGS; the primary laboratory) under strict chain-of-custody (COC) conditions, while the split (inter-laboratory) field duplicate was submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory). Signed COC certificates and sample receipt advice (SRA) were provided by SGS and Envirolab for confirmation purposes (Appendix H).
Laboratory Analysis and Quality Control	Soil samples were analysed by SGS and Envirolab for the COPCs. All analyses were performed within the required holding period, as documented in the corresponding laboratory reports (Appendix I).
	In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared trip spike sample and a laboratory-prepared trip blank sample, all analysed by SGS.

5.7 Groundwater Sampling Methodology

The groundwater sampling methodology is described in **Table 5-5**. Monitoring well locations are identified in **Figure 2**, **Appendix A**.

Activity	Details		
Fieldwork	Three groundwater monitoring wells (BH107M, BH109M and BH113M) were installed on 10 October 2024. The bores were mechanically drilled to 8.6 mBGL, 8.1 mBGL and 10 mBGL, respectively (all encountering refusal in shale bedrock).		
Well Construction	 Well construction was in accordance with NUDLC (2020) and involved the following: Ø50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in wells set to screen to at least 0.5m above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; The base and top of each well was sealed with a uPVC cap; 		
	 Annular, graded sand filter was applied to approximately 0.5m above the top of the screen interval; 		
	 Granular bentonite was applied above the annular filter to seal the screened interval; Cement backfilled to just below ground level; and 		
	 Surface completion comprised a stick-down section of pipe, a plastic J-cap closing the well and a gatic cover at ground level. 		
	Immediately after installation, the well was developed to remove any (seepage) water and sediment. Water level gauging, purging, field testing and sampling of the groundwater monitoring wells were conducted more than one week after installation.		

 Table 5-5
 Summary of Groundwater Sampling Methodology

Activity	Details
Well Development	Well development involved agitation and water removal within the full length of the water column using a dedicated, high-density polyethylene (HDPE), disposable bailer. Development was continued until no further reduction in suspected sediment was observed (i.e. after removal of several well volumes).
Well Survey (Elevation)	Ground surface elevation at each monitoring well location was determined using a high precision RKT GNSS using the closest station to the site. Well elevations were obtained in metres AHD. Survey data is provided in the borehole / well logs (Appendix G).
Well Gauging	Each monitoring well was gauged to determine SWL, prior to purging and groundwater sampling. Gauging was undertaken with a water/oil interface probe to measure possible light and dense, non-aqueous phase liquids.
Well Purging, Field Testing and Sampling	Groundwater was purged and sampled by a low-flow / minimal draw-down method, using a peristaltic pump with dedicated tubing. During the purging process, water was continuously measured for field parameters (temperature (T), electrical conductivity (EC), oxidation-reduction potential (ORP), dissolved oxygen (DO) and pH) using a <i>Hanna Multi Parameter 9829</i> positioned within an open flow-through cell. Once water quality parameters stabilised (i.e. within ±0.2° for T, ±3% for EC, ±20mV for ORP, ±10% for DO and ±0.05 for pH), groundwater sampling was undertaken, by diverting the outlet of the bladder pump (immediately before the flow cell) to the sampling vials and bottles. Refer to Appendix F for all field data sheets.
Decontamination Procedure	Dedicated gloves were used for the collection of each sample. Sampling equipment (interface probe, sampling pump, and water quality kit probes) were decontaminated between uses by washing in a mixture of <i>Alconox</i> and potable water (1/20), and then rinsed with potable water.
Sample Preservation	 Samples were collected into laboratory-supplied, pre-preserved containers, as follows: One, 1 litre amber glass, acid-washed and solvent-rinsed bottle; Two, 40mL glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; One, 250mL HDPE bottle, pre-preserved with dilute nitric acid (1mL); and One HDPE bottle for PFAS analysis, with no Teflon-lined lid. Samples for metals analysis were field filtered through 0.45 µm pore-size membranes. All containers were filled with sample to the brim then capped and stored in an insulated chest (containing ice packs), until completion of the fieldwork and during transit to the laboratory.
Sample Transport	Primary water samples were transported to SGS under strict COC conditions, while the split (inter-laboratory) field duplicate was submitted to Envirolab. Signed COC certificates and SRA were provided by SGS and Envirolab for confirmation purposes (Appendix H).
Laboratory Analysis and Quality Control	Groundwater samples were analysed by SGS and Envirolab for selected COPCs. All analyses were performed within the required holding period, as documented in the corresponding laboratory reports (Appendix I). In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared trip spike sample and a laboratory-prepared trip blank sample, all analysed by SGS.

6. Data Quality Assessment

The assessment of data quality is defined as the statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this DSI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures. The findings are summarised in **Table 6-1** and discussed in further detail in **Appendix K**.

In summary, the overall quality of the analytical data from this DSI was considered to be of an acceptable standard for interpretive use and preparation of an updated CSM.

Stage	QA/QC Component(s)	Conformance [Yes, Part, No]	Report Section(s) Section 5.2	
Preliminaries	DQOs and DQIs established	Yes		
Sampling	Use of appropriate sampling plan	Part	Table 5-1, Section 5.4	
Plan and Field Work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes, calibration forms	Yes	Appendices F and G	
	All media sampled and duplicates collected	Yes	Appendix H	
	Use of approved and appropriate sampling methods (soil and groundwater)	Yes	Section 5	
	Selection of soil samples according to field PID readings (where VOCs are present)	Yes	Section 5	
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	Sections 5.6 and 5.7	
	Appropriate rinsate, field and trip blanks taken	Yes	Sections 5.6 and 5.7 and Appendix K	
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	Appendix H	
Laboratory	Sample holding times within acceptable limits	Yes	Appendices I, J, K	
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	Appendices I, J, K	
	LORs low enough to meet adopted criteria	Yes	Appendices I, J, K	
	Blanks	Yes	Appendices I, J, K	
	Duplicates	Yes	Appendices I, J, K	
	Matrix spikes	Yes	Appendices I, J, K	
	Surrogates	Yes	Appendices I, J, K	
	Results for replicates expressed as RPD	Yes	Appendices I, J, K	
	Checking for unusual or anomalous results that appear inconsistent with field observations	Yes	Appendices B, F, G	
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes	Yes	Document Control	

Table 6-1 Quality Assurance Process

7. Results

7.1 Soil

Subsurface Conditions

Based on the logs for boreholes BH101-BH116 (**Appendix G**), and excluding all hardstand pavements, the sub-surface of the site was generalised as a layer of poorly compacted, silty sand, gravelly sand and/or sand filling, overlying natural (residual), silty clay / gravelly clay and (weathered) shale bedrock, the latter encountered from 4.7-4.9 mBGL. More detailed description is provided in **Table7-1**.

Layer	Description	Minimum - Maximum Depth (mBGL)
Fill	Silty SAND; fine to coarse grained, grey / pale brown / brown, with sub-angular to angular gravels, with rootlets, no odour	0.0 -0.7
	Gravelly SAND; fine to coarse grained, grey / brown, with sub-angular to angular gravels, no odour	0.01-0.6
	SAND; fine grained, pale brown, with rootlets, no odour	0.0-0.9
Natural (Residual)	Silty CLAY; medium to high plasticity, orange mottled red / orange / pale grey, no odour	0.3 – 4.7
Soil	Gravelly CLAY; medium plasticity, orange mottled red, with sub angular gravels, no odour	0.6-1.0
Bedrock	SHALE: extremely weathered, initially of low strength and increasing with depth, no odour	4.7 – 10.0+

Table 7-1 Generalised Sub-Surface Profile

Field observations and PID Results

Soil samples were collected from the test bores at various depths. All examined soils were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, foreign materials, asbestos fragments, ash, and charcoal). The observations were as follows:

- No suspicious odour was detected in any of the examined soils and weathered shale;
- No staining was observed in any of the examined soils and weathered shale;
- No ACM fragments were observed in any of the examined materials (spoil);
- No ash or slag was observed in any of the examined soils and weathered shale.

With regards to the screening of soil headspace samples for VOCs using a calibrated PID:

 No significant PID reading was recorded, the values ranging from 0.0-3.2 parts per million (ppm). These results were consistent with the non-detection of any suspicious odour in the examined soils and weathered shale.

Laboratory Analytical Results

A summary of the laboratory analytical results for the tested (representative) soil samples is presented in **Table7-2**. More detailed tabulation is presented in **Table B.1**, **Appendix B**. Refer also to **Appendix L** for statistical analyses involving the soil data.

All results were found to comply with the adopted SILs applicable to residential settings with minimal soil access, except for the C_{10} - C_{16} (F2) TRH fraction in BH111_0.1-0.2 (170 mg/kg), which slightly exceeded the corresponding ESL of 120 mg/kg.

Minimum Maximum Sample(s) Exceeding SIL Number of Analyte Concentration Concentration **Primary Samples** (mg/kg) (mg/kg) **Priority Metals** None 20 21 Arsenic <1 Cadmium 21 < 0.3 0.3 None 21 Chromium 1.7 73 None 58 21 Copper 2.8 None 24 Lead 1 55 None 21 Mercury < 0.05 <0.05 None 21 Nickel 100 None 1.1 21 Zinc 3.6 60 None PAHs 21 Naphthalene <0.1 <0.1 None 21 Benzo(a)pyrene <0.1 <0.1 None 21 Carcinogenic PAHs (as B(a)P TEQ) < 0.3 < 0.3 None 21 **Total PAHs** <0.8 None <0.8 **BTEX and TRHs** 24 Benzene <0.1 <0.1 None 24 Toluene <0.1 None <0.1 24 Ethyl benzene <0.1 <0.1 None **Total Xylenes** 24 < 0.3 < 0.3 None 24 TRH-F1 <25 <25 None 24 TRH-F2 <25 170 None 24 TRH-F3 <90 250 None 24 TRH-F4 <120 260 None **Pesticides and PCB** 13 Total OCPs <1 <1 None 13 **Total OPPs** <1.7 <1.7 None 13 **Total PCBs** None <1 <1 VOCs **Total VOC** <24 <24 6 None Phenols 6 **Total phenols** < 0.5 < 0.5 None Asbestos 20 Asbestos Not detected Not Detected None

Table 7-2 Summary of Soil Analytical Results

7.2 Groundwater

Monitoring Well Construction

Three groundwater monitoring wells (BH107M, BH109M and BH113M) were installed for this DSI. The well construction details are summarised in **Table 7-3**.

Well	Top of casing (mAGL)	Top of Casing (mAHD)	Well Depth (mBGL)	Screen Interval (mBGL)	Lithology Screened
BH107M	-0.05	22.86	8.6	5.6-8.6	Shale Bedrock
BH109M	1.0	23.88	7.2	4.2-7.2	Shale Bedrock
BH113M	1.0	22.69	10	7.0-10.0	Shale Bedrock

Table 7-3 Monitoring Well Construction Details

Footnotes:

m AGL - metres above ground level; m AHD - metres Australian Height Datum

Water seepage (first water) was not encountered during drilling of the bores

Field Observations and Water Quality Readings

Field data collected during the GME are presented in **Table 7-4**. Field data sheets are attached in **Appendix G**. Groundwater was evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- Groundwater was pale white / pale brown in colour, with medium to high turbidity;
- No suspicious odour was detected in any of the wells, or purged and sampled groundwater;
- No sheen was observed in any of the purged and sampled groundwater;
- SWLs were 8.2 mBGL, 6.6 mBGL and 9.78 mBGL, respectively; and
- At the time of the GME, there was insufficient water in BH113M to allow purging / sampling.

Well	Well Elevation (mAHD)	SWL (mBGL)	SWL (mAHD)	DO (mg/L)	рН	EC (μS/cm)	т (°С)	ORP (mV)
BH107M	22.91	8.2	14.71	0.65	6.63	23590	24.5	245
BH109M	22.88	6.6	16.28	0.96	6.56	20620	22.0	284
BH113M	21.69	9.78	11.91	-	-	-	-	-

Table 7-4 Groundwater Field Data

Footnotes:

mAHD – metres Australian Height Datum; SWL – standing water level

ORP readings were adjusted to the standard hydrogen electrode by adding an electrode potential of 205mV

Based on the groundwater elevations and local topography, the inferred groundwater flow gradient was towards the north-eastern boundary. A groundwater contour plan showing regional flow across the site is presented as **Figure 3**, **Appendix A**.

The physio-chemical data indicated that local groundwater was mildly acidic (pH: 6.56-6.63), saline (EC: 20620-23590 μ S/cm) and non-oxidising (DO: 0.65-0.96 mg/L; ORP: 245-284mV).

Laboratory Analytical Results

A summary of the laboratory analytical results for the groundwater samples is presented in **Table 7-5**. More detailed tabulation is presented in **Table B.2**, **Appendix B**.

All results were found to comply with the adopted GILs, except for some dissolved metals (arsenic, cadmium, copper, nickel and zinc). The concentrations, however, were consistent with natural (background) levels in groundwater from highly urbanised areas, including the Sydney suburb of Villawood.

Table 7-5 Summary of Groundwater Analytical Results

Number of Primary Samples	Analyte	Minimum Concentration (μg/L)	Maximum Concentration (µg/L)	Sample(s) Exceeding GIL			
Priority Metals (total dissolved)							
2	Arsenic	20	20	BH107M (20 μg/L) BH109M (20 μg/L)			
2	Cadmium	0.2	0.8	BH107M (0.8µg/L)			
2	Chromium	<1	<1	None			
2	Copper	<1	3	BH107M (3µg/L)			
2	Lead	<1	<1	None			
2	Mercury	<0.1	<0.1	None			
2	Nickel	27	32	BH107M (32 μg/L) BH109M (27 μg/L)			
2	Zinc	45	63	BH107M (20 μg/L) BH109M (20 μg/L)			
РАН							
2	Naphthalene	<0.1	<0.1	None			
2	Benzo(α)pyrene	<0.1	<0.1	None			
2	Total PAH	<1	<1	None			
BTEX							
2	Benzene	<0.5	<0.5	None			
2	Toluene	<0.5	<0.5	None			
2	Ethyl benzene	<0.5	<0.5	None			
2	o-xylene	<0.5	<0.5	None			
2	m + p-xylene	<1	<1	None			
TRHs							
2	F1 TRH	<50	<50	None			
2	F2 TRH	84	97	None			
2	F3 TRH	<500	<500	None			
2	F4 TRH	<500	<500	None			
VOCs							
2	Total VOC	<10	<10	None			
Phenols							
2	Total phenols	<50	<50	None			
PFAS							
2	PFOS	<0.01	<0.01	None			
2	PFOS + PFHxs	<0.01	<0.01	None			
2	PFOA	<0.01	<0.01	None			

8. Site Characterisation

8.1 Subsurface Soil Conditions

Based on the logs for boreholes BH101-BH116, and excluding all hardstand pavements, the sub-surface of the site was generalised as a layer of poorly compacted, silty sand, gravelly sand and/or sand filling, overlying natural (residual), silty clay / gravelly clay and (weathered) shale bedrock, the latter encountered from 4.7-4.9 mBGL. The potential for ASSs to be present on the site was very low.

8.2 Soil Impacts

Laboratory analytical results for the representative fill and natural soil samples were compared against the adopted SILs.

Human Health

All results were found to comply with the adopted human health-based SILs applicable to residential settings with minimal soil access.

Ecological

All results were found to comply with the adopted EILs/ESLs, except for the C_{10} - C_{16} (F2) TRH fraction in BH111_0.1-0.2 (170 mg/kg), which slightly exceeded the corresponding ESL of 120 mg/kg. The 95% upper confidence limit (UCL) of the arithmetic average for C_{10} - C_{16} (F2) TRHs in fill soil was 56.0 mg/kg (n=13), which complied with the corresponding ESL (**Appendix L**). It was therefore considered that site fill soils would not pose a risk to ecological receptors in regards to TRHs.

Asbestos Risk

Twenty (near-) surface soil samples were laboratory screened for the presence of asbestos. For all samples, no ACM was detected (<0.01% w/w detection limit). Given the absence of FCS fragments across the accessible site surfaces, the site was deemed to be low risk with respect to this contaminant.

8.3 Groundwater Impacts

Based on the GME conducted on 17 October 2024, the local groundwater table was at 6.60-9.78 mBGL (11.91-16.28 mAHD). The groundwater flow direction was inferred to be northeasterly, towards the concrete-lined canal, which ultimately drains into the Georges River (approximately 2 km south west of the site). A groundwater contour plan showing regional flow across the site is presented as **Figure 3**, **Appendix A**.

Local groundwater was mildly acidic (pH: 6.56-6.63), saline (EC: 20,620-23,590 μ S/cm) and non-oxidising (DO: 0.65-0.96 mg/L; ORP: 245-284mV). All laboratory analytical results for the representative samples (BH107M and BH109M) were found to comply with the adopted GILs, except for some dissolved metals (arsenic, cadmium, copper, nickel and zinc). The concentrations, however, were consistent with natural (background) levels in groundwater from highly urbanised areas, including the Sydney suburb of Villawood. The local soils were not considered to be the source of metal impacts (at least for those tested for this DSI), given the generally low levels in the representative (fill and natural) samples.

8.4 Review of Conceptual Site Model

On the basis of investigation findings, the CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential on-site and off-site receptors. El concluded that gross, or widespread, contamination was not present within the site (proposed development) area.

Some uncertainty remains with regard to the "anomalies" identified within the concrete patch area in the western portion of the site, as noted in the GPR survey (**Appendix F**). Further investigation by way of exploratory trenching is necessary, to fully assess the area for the presence of abandoned/former infrastructure. Such trenching will be best served post building and pavement demolition.

9. Conclusion

At the request of ABA Square Pty Ltd, a detailed investigation of 15 Hilwa Street and 890, 896 and 898 Woodville Road, Villawood NSW was conducted, the purpose being to assess the nature and degree of any contamination.

The key findings of this DSI were:

- The southern portions of the site (15 Hilwa Street and 898 Woodville Road) had continuously been used for residential purposes. The central and northern portions had been used for commercial purposes since the mid-1960s, at least, the activities including a donut shop, restaurants and piano store. The presence of a rectangular, concrete slab repatch near the mid-western boundary, suggested the presence of a former UST.
- The local surroundings had consisted of residential and commercial properties since the 1940s, at least. A petrol service station was immediately adjacent (east; on 894-896 Woodville Road).
- The site was free of statutory notices and licensing agreements issued under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997. No part of it was included on the List of NSW Contaminated Sites Notified to the EPA.
- No above-ground storage tank (AST) was present on the site. A GPR survey of the rectangular concrete patch near the western boundary of 890 and 896 Woodville Road "did not validate the parameters associated with the potential underground storage tank"; however, there were indications "suggesting the presence of an anomaly or variation in the subsurface composition", such that "the findings point to potential underground features that warrant further exploration and analysis".
- Excluding all hardstand pavements, the sub-surface of the site was generalised as a layer of poorly compacted, silty sand, gravelly sand and/or sand filling, overlying natural (residual), silty clay / gravelly clay and (weathered) shale bedrock, the latter encountered from 4.7-4.9 mBGL. The potential for ASSs to be present on the site was very low.
- No olfactory indication of contamination (i.e. suspicious odour) was detected during the site inspections and subsequent sampling works. No visual evidence of contamination was encountered, including fragments of FCS on the ground surface.
- All laboratory analytical results for the representative fill and natural soil samples were found to comply with the adopted human health-based SILs applicable to residential settings with minimal soil access.
- The site was deemed to be low risk with respect to asbestos contamination.
- The local groundwater table was at 6.60-9.78 mBGL (11.91-16.28 mAHD). The groundwater flow direction was inferred to be north-easterly, towards the concrete-lined canal, which ultimately drains into the Georges River (approximately 2km south west of the site).
- Local groundwater was mildly acidic (pH: 6.56-6.63), saline (EC: 20,620-23,590 μS/cm) and non-oxidising (DO: 0.65-0.96 mg/L; ORP: 245-284mV). All laboratory analytical results for the representative samples (BH107M and BH109M) were found to comply with the adopted GILs, except for some dissolved metals (arsenic, cadmium, copper, nickel and zinc). The concentrations, however, were consistent with natural (background) levels in groundwater from highly urbanised areas.

Based on the findings of this DSI, and with consideration of El's *Statement of Limitations* (**Section 11**), it was concluded that gross, or widespread, contamination was not present within the site area. The land can be made suitable for the proposed (mixed-use commercial/residential) development, in accordance with *State Environmental Planning Policy* (*Resilience and Hazards*) 2021, subject to the implementation of the recommendations made in **Section 10** of this report.

10. Recommendations

El makes the following recommendations in relation to the proposed redevelopment:

- Before commencement of any demolition works, a Hazardous Materials Survey (HMS) should be completed by a suitably qualified consultant, to confirm the presence / location of any hazardous materials within the existing building fabrics.
- All demolition and excavation works must be managed in accordance with the *Fairfield Development Control Plan 2013*.
 - Where subsequent clearance inspection indicates hazardous materials remain on the site, removal and re-clearance, must be undertaken.
- Upon completion of the demolition stage (including surface pavement removal), exploratory trenching within the concrete patch area in the western portion of the site will be necessary to further assess the presence of potential unexpected finds (anomalies).
- All soil materials designated for off-site disposal as part of the proposed development, including any virgin excavated natural material (VENM), must be pre-classified in accordance the NSW EPA (2014) Waste Classification Guidelines. In designing the SAQP for waste classification, the EPA (2022a) Sampling Design Part 1 Application guidelines should be referred to and the analytical suite is to include the identified COPCs (Section 4). The analytical results from this DSI could be utilised for this purpose.
- All non-VENM (fill) soils are to be transported to NSW EPA-licenced landfill facilities. Tipping dockets are to be collated for all waste loads removed off-site.
- Any material imported to the site should be validated as suitable for the intended (residential) land use, in accordance with NSW EPA guidelines.

El emphasises that these recommendations can be managed through the development application process, in accordance with *State Environmental Planning Policy (Resilience and Hazards) 2021.*

11. Statement of Limitations

This report has been prepared for the exclusive use of ABA Square Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with ABA Square Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, NSW EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

EI's investigation was based upon the results of a restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigation.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

References

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

Chapman GA and Murphy CL (1989) *Soil Landscapes of the Sydney 1:100 000 Sheet*, Soil Conservation Service of NSW, Sydney, September 1989.

CRC CARE (2013) *Petroleum Hydrocarbon Vapour Intrusion Assessment: Australian Guidance*, CRC CARE Technical Report 23, Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, July 2013.

CRC CARE (2017) *Risk-Based Management and Remediation Guidance for Benzo(a)pyrene*, CRC CARE Technical Report 39, Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Newcastle, Australia, January 2017.

DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, New South Wales Department of Environment and Conservation, DEC 2007/144, June 2007.

DPIE (2024) *eSPADE v2.2 Portal*, NSW Department of Planning, Industry and Environment, retrieved from www.espade.environment.nsw.gov.au.

EI (2022a) Preliminary Site Investigation; 15 Hilwa Street and 890, 896 & 898 Woodville Road, Villawood NSW, Report E25635.E01_Rev0, 27 June 2022

El (2022b) Preliminary Geotechnical Investigation; 15 Hilwa Street, 890, 896 & 898 Woodville Road, Villawood NSW, Report E25635.G01, 27 June 2022.

GS / DME (1991) *Penrith 1:100,000 Geological Series Sheet 9o30*, Geological Survey of New South Wales, Department of Minerals and Energy, 1991.

HEPA (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

Murphy CL (1997) *Acid Sulfate Soil Risk of the Port Hacking Sheet* (Second Edition), Department of Land and Water Conservation, Sydney (supplied by the Sydney South Coast, Geographical Information Systems Unit).

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

NHMRC (2008) *Guidelines for Managing Risks in Recreational Water*, National Health and Medical Research Council, February 2008.

NHMRC (2022) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.8, September 2022.

NSW EPA (2014) *Waste Classification Guidelines – Part 1: Classifying Waste*, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.

NSW EPA (2015) *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997*, Environment Protection Authority of New South Wales, EPA 2015/0164, September 2015.

NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (Third Edition), Environment Protection Authority of New South Wales, EPA 2017P0269, October 2017.

NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

NSW EPA (2022a) Sampling Design Part 1 - Application: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3915, August 2022.

NSW EPA (2022b) Sampling Design Part 2 – Interpretation: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3916, August 2022.

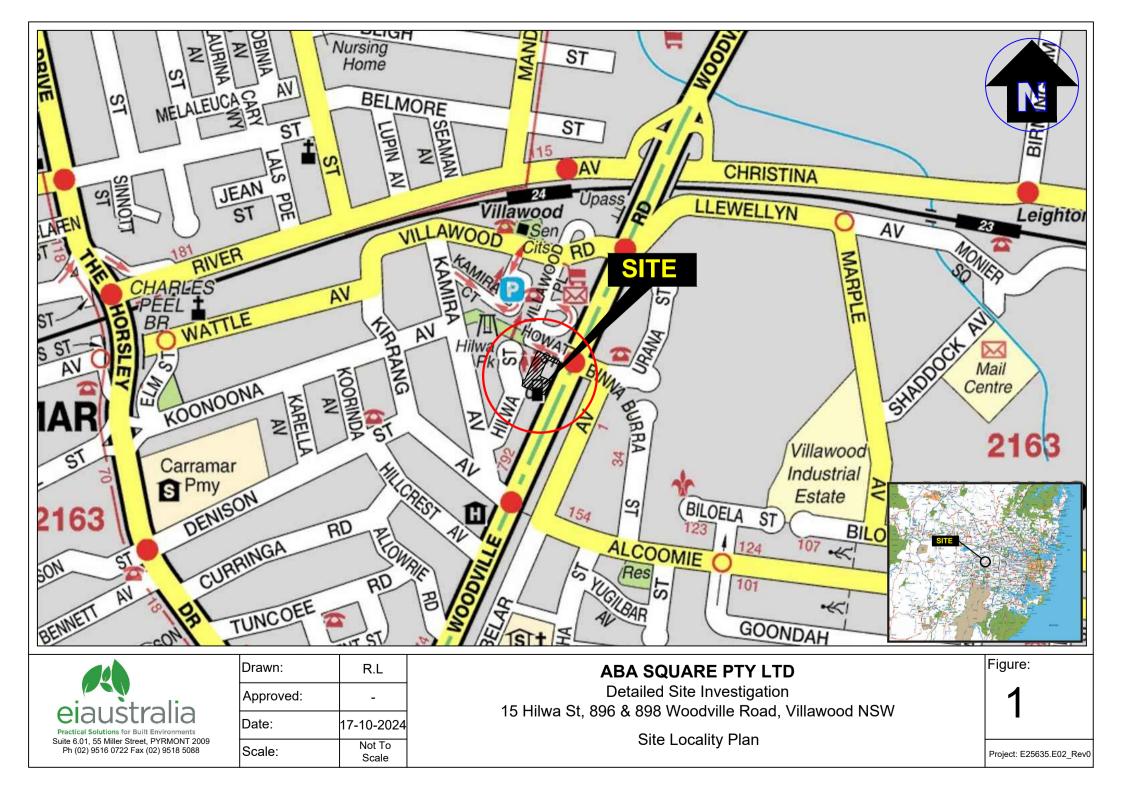
NSW Government (2021) *State Environmental Planning Policy (Resilience and Hazards)* 2021, 2 March 2022.

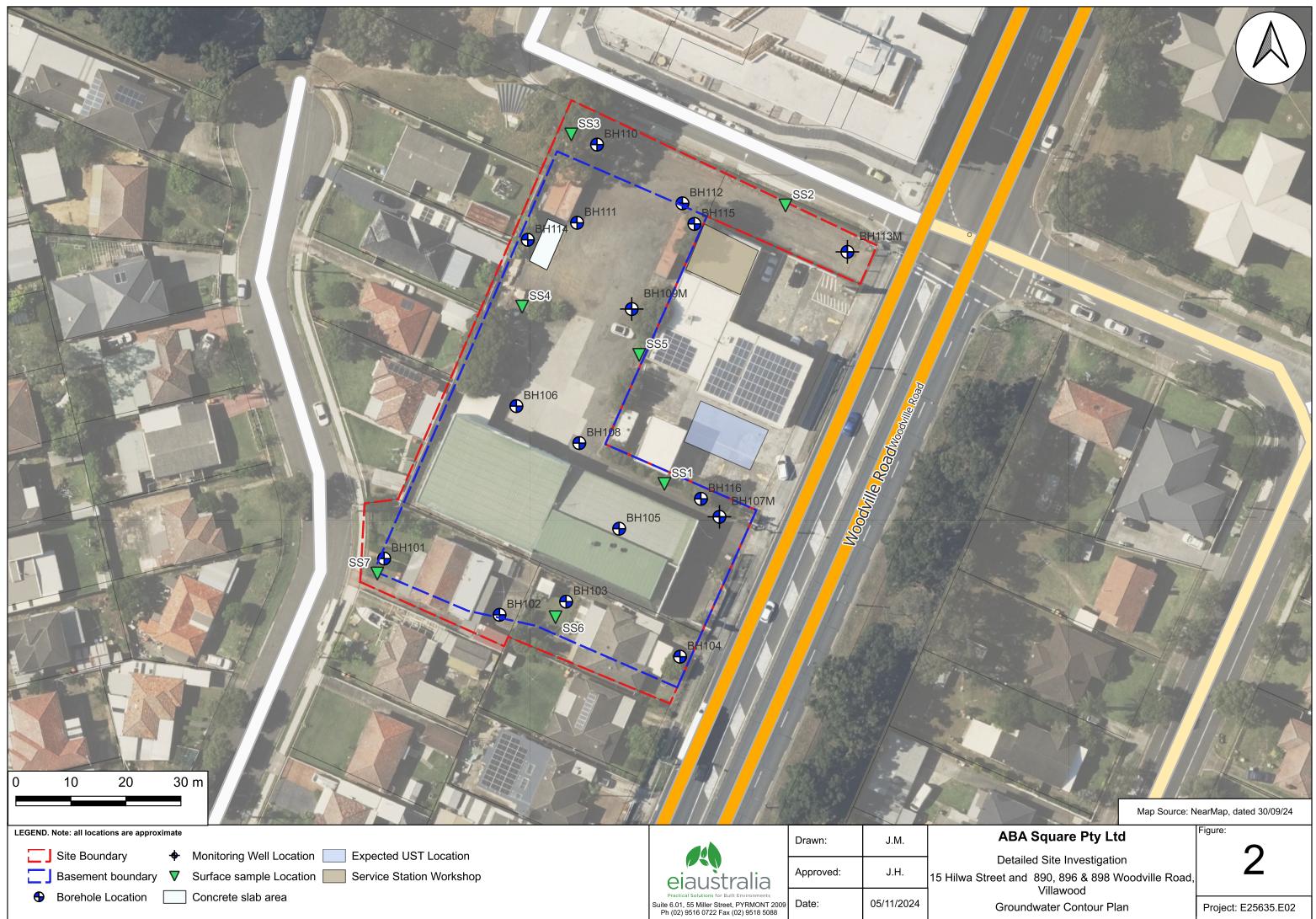
NUDLC (2020) *Minimum Construction Requirements for Water Bores in Australia* (Fourth Edition), National Uniform Drillers Licensing Committee 2020, 2020.

Standards Australia (2005) Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia 2005.

Standards Australia (2017) *Australian Standard AS1726-2017 Geotechnical Site Investigations*, Standards Australia 2017.

USEPA (2000a) *Guidance for the Data Quality Objectives Process*, EPA QA/G-4, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.


USEPA (2000b) *Data Quality Objectives Process for Hazardous Waste Site Investigations*, EPA QA/G-4HW, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.


USEPA (2006) *Data Quality Assessment: A Reviewers Guide – EPA QA/G-9R*. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*, Western Australian Department of Health, May 2009.

Appendix A – Figures

Appendix B – Tables

Table B.1 – Summary of Soil Analytical Results

		Priority Metals										PAHs			BT	EX		TRHs						Pesticides			E25635 - Villa Asbestos
Sample ID	Sampling Date	As	Cd	Cr [#]	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(q)P TEQ)	Benzo(ɑ)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	Total VOCs	Total Phenols	OC Ps	Opps	PCBs	Presence / absence
BH101_0.1-0.2		6	<0.3	15	17	55	<0.05	4.1	59	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	<1	<1.7	<1	Absent
H102_0.2-0.3 H103_0.1-0.2		2	0.3 <0.3	6.9 11	9 21	13 41	<0.05 <0.05	4.1 3.2	33 37	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	NA	NA NA	<1	<1.7	<1	Absent Absent
H104_0.1-0.2		2	<0.3	4.7	14	30	< 0.05	7.5	40	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	<1	<1.7	<1	Absent
H105_0.2-0.3 H106_0.2-0.3		<1	<0.3 <0.3	1.7	2.8 58	2	<0.05 <0.05	1.1 100	3.6 38	<0.3 <0.3	<0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	< 0.3	<25 <25	<25 <25	<90 <90	<120 <120	NA	NA NA	<1	<1.7	<1	Absent Absent
107M_0.3-0.4		2	<0.3	8.2	53	2	< 0.05	100	49	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<24	< 0.5	<1	<1.7	<1	Absent
H108_0.2-0.3 109M_0.2-0.3		2	<0.3 <0.3	8.3 13	53 58	3	<0.05 <0.05	78 92	40 40	<0.3 <0.3	<0.1	<0.8 <0.8	< 0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	< 0.3	<25 <25	<25 <25	<90 <90	<120 <120	NA <24	NA <0.5	<1	<1.7	<1	Absent Absent
1110_0.1-0.2	10/10/2024	4	<0.3	17	39	20	< 0.05	54	44	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	130	220	NA	NA	<1	<1.7	<1	Absent
111_0.1-0.2 112_0.1-0.2		3	<0.3 <0.3	18 38	55 47	4	<0.05 <0.05	58 80	37 51	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.3 <0.3	<25 <25	170 <25	250 <90	260 <120	NA	NA	<1	<1.7	<1	Absent Absent
113M_0.1-0.2		2	<0.3	73	35	5	< 0.05	81	60	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	91	<120	<24	< 0.5	<1	<1.7	<1	Absent
SS1 SS2		NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	Absent Absent
SS3		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Absent
SS4 SS5		NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	Absent Absent
SS5 SS6		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Absent
SS7		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Absent
Maximum co	ncentration	6	0.3	73	58	55	<0.05	100	60	<0.3	<0.1	<0.8	stical Analysis	<0.1	<0.1	<0.1	<0.3	<25	170	250	260	<24	<0.5	<1	<1.7	<1	Absent
95% UC	CL (Fill)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	56.03	NC	NC	NC	NC	NC	NC	NC	NC
104_0.4-0.5		4	<0.3	16	2.7	17	< 0.05	1.7	8.6	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA	NA	NA
106_0.7-0.8		5	< 0.3	23	12	13	< 0.05	6.6	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA	NA	NA
07M_0.8-0.9 09M_1.0-1.1		8	<0.3 <0.3	16 19	13 15	13 14	<0.05 <0.05	2.2	16 13	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<24 <24	NA NA	NA	NA	NA	NA
110_0.4-0.5	10/10/2024	5	<0.3	7.6	9.7	9	< 0.05	2	6.2	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA	NA	NA
1111_0.6-0.7 1112_0.4-0.5		20	<0.3 <0.3	12 5.1	16 11	13 8	<0.05 <0.05	6.7 0.5	13 6.1	<0.3 <0.3	<0.1	<0.8 <0.8	<0.1	<0.1	<0.1 <0.1	<0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120	NA	NA	NA	NA	NA	NA
113M_0.6-0.7		12	<0.3	11	13	8	<0.05	1.6	12	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<24	NA	NA	NA	NA	NA
H114_2.5-2.6	30/10/2024	NA	NA NA	NA	NA	19 14	NA NA	NA	NA	NA NA	NA NA	NA	NA	<0.1	<0.1 <0.1	<0.1 <0.1	< 0.3	<25 <25	<25 <25	<90 <90	<120	NA NA	NA NA	NA	NA NA	NA	NA
H115_2.4-2.5 H115_2.5-2.6	50/10/2024	NA	NA	NA	NA	14	NA	NA	NA	NA	NA	NA	NA NA stical Analysis	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA	NA	NA
Maximum co	oncentration	20	<0.3	23	16	19	<0.05	6.7	16	<0.3	<0.1	<0.8	<0.1 (2013) Criteri	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<24	NC	NC	<1.7	NC	NC
HIL B - Residential with	h minimal soil access	500	150	500 Cr(VI)	30,000	1,200	120	1,200	60,000	4		400	(2013) Citter										45,000	600		1	
		-		OI(VI)			depths (0 m to						5	0.7	480	NL	110	50	280				1	1		1	
HSL A & B - Low to hig Soil texture class							depths (1 m to depths (2 m to	-					NL NL	2	NL NL	NL NL	310 NL	90 150	NL NL								
							rce depths (4 m	-					NL	3	NL	NL	NL	290	NL								
HSL D - Commer	rcial / Industrial						depths (0 m to depths (1 m to						NL NL	4	NL NL	NL NL	NL NL	310 480	NL NL								
Soil texture class						Source	depths (2 m to	<4 m. BGL)					NL	9	NL	NL	NL	NL	NL								
				1	1	Sou	rce depths (4 n	n + BGL)			8		NL	20	NL	NL	NL	NL	NL		[1		1	1		
ESLs - Urban residentia	al and public open space $^{1\ 2}$	100		410	200	1,100		140	490		33 ³		170	65	105	125	45	180	120	1,300	5,600			180			
ent Limits – Residential, 1	parkland and public open space		•	1	1		•					•			1		•	800	1,000	3,500	10,000			-			
Notes:	Highlighted values exceed HIL / HSI	_																1		I	I						
	Highlighted values exceedEILs/ESL: Concentration exceeds highlighted o																										
recorded in mg/kg																											
	NEPC 1999 Amendment 2013 'HIL NEPC 1999 Amendment 2013 'HSL										is high-rise build	ngs and apartments	š.														
E	Ecological Investigation Level for urb	oan residential ar	nd public open sp	pace land use.				.g	g																		
ESL Ecology Screening Level for urban residential and public open space land use. # Thresholds are for Chromium VI. NA Not Analysed																											
	Not Analysed Not Limiting' If the derived soil vapou	ur limit exceeds t	he soil concentra	ation at which th	ne pore water pha	ase cannot diss	olve any more of	the individual c	hemical																		
M	Not calculated As strata is predominantly clay, fine						-																				
	EIL criteria is derived from a site spe	cific Added Con	aminant Limit (A	CL) with the An	mbient Backgrou																						
	The ecological criteria for benzo(α)p				inical Report No.	39 Risk-based	management and	a remediation g	uidance for ben	zo(a)pyrene.																	
1	To obtain F1 subtract the sum of BT			TU IIdcii0II.																							
1 1 1	To obtain F1 subtract the sum of BT To obtain F2 subtract naphthalene fr (>C16-C34)			TU ITACIJUTI.																							

Table B.2 - Summary of Groundwater Analytical Results

						Meta	ls					PAHs ⁹				BTEX				TR	Hs					PFAS	
Sample I	D Samp Dat		As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(a)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Total VOC	Total Phenols	PFOS	PFOS + PFHxs	PFOA
BH107N	1 17/10/	12024	20	0.8	<1	3	<1	<0.1	32	45	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	97	<500	<500	<10	<50	< 0.01	< 0.01	< 0.01
BH109N	1 17/10/	2024	20	0.2	<1	<1	<1	<0.1	27	63	<1	<0.1	<0.1	<0.5	<0.5	<0.5	< 0.5	<1	<50	84	<500	<500	<10	<50	< 0.01	< 0.01	< 0.01
Statistical Analysis																											
Maximu	m Concentration		20	0.8	1	3	1	0.1	32	63	1	0.1	0.1	0.5	0.5	0.5	0.5	1	50	97	500	500	10	50	0.01	0.01	0.01
GILs																											
HSLA&B-	Low to high dens	sity					2m to <4	4m					NL	5,000	NL	NL	NL	NL	NL	NL							
	esidential			4m to <8m											NL	NL	NL	NL	NL	NL							
Soil texture	classification - C	lay					8m+						NL	5,000	NL	NL	NL	NL	NL	NL							
	mmercial / industr	rial	2m to <4m											30,000	NL	NL	NL	NL	NL	NL							
	classification – C		4m to <8m NL 30,000 NL NL NL NL NL NL NL																								
							8m+						NL	35,000	NL	NL	NL	NL	NL	NL							
011.5	Fresh Water	s ¹	24 (AsIII) 13 (AsV)	0.2	1 3 (Cr VI)	1.4	3.4	0.06 2	11	8 ³		0.2	16	950	180	80	350	275						320			
GILs	Recreational W	ater 6	100	20		1,000 *	100	10	200	3,000*				10	25*	3*	20 *	20 *								7	56
PFAS	- Freshwater 8																								0.13		220

Notes:

Highlighted indicates criteria exceeded

Highlighted indicates criteria not met

All values are µg/L unless stated otherwise

HSL A & B NEPC 1999 Amendment 2013 'HSL A & B' Health Based Screening Levels for vapour intrusion applicable for low-high density residential settings.

HSL D NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels for vapour intrusion applicable for commercial / industrial settings.

NL Not Limiting

NA 'Not Analysed' i.e. the sample was not analysed.

ND Not Detected - i.e. concentration below the laboratory PQL

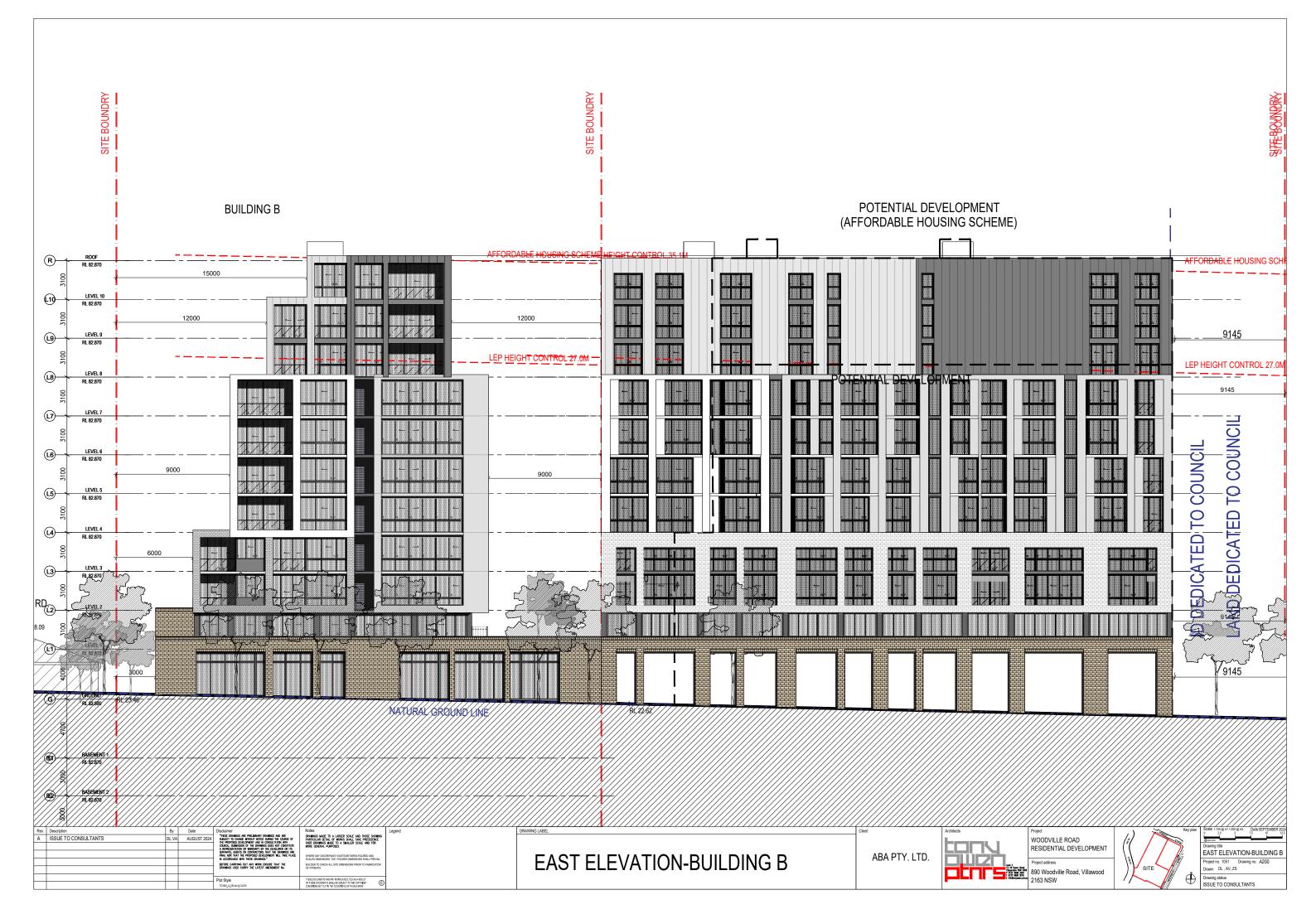
F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

F3 (>C16-C34)

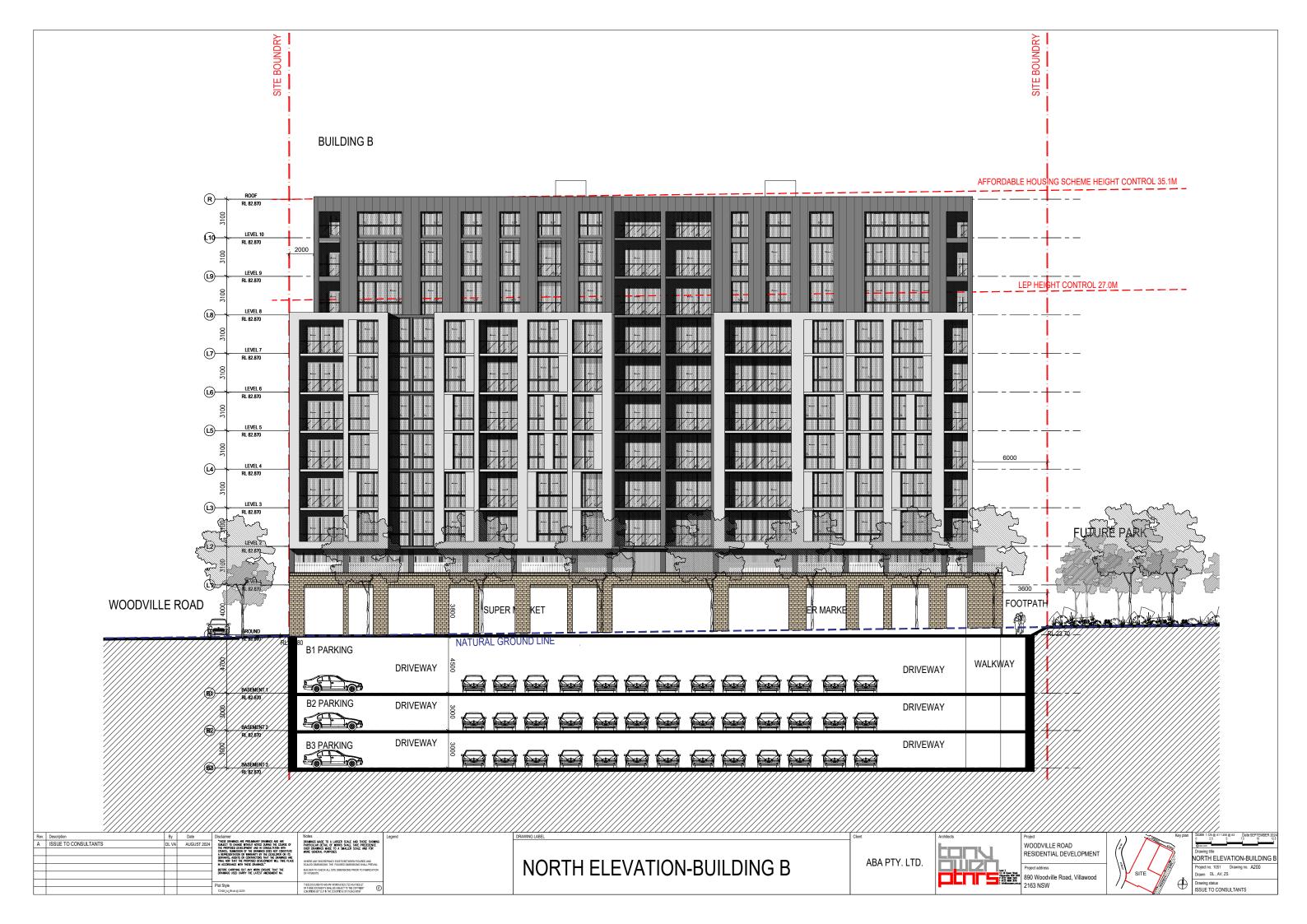
F4 (>C34-C40)

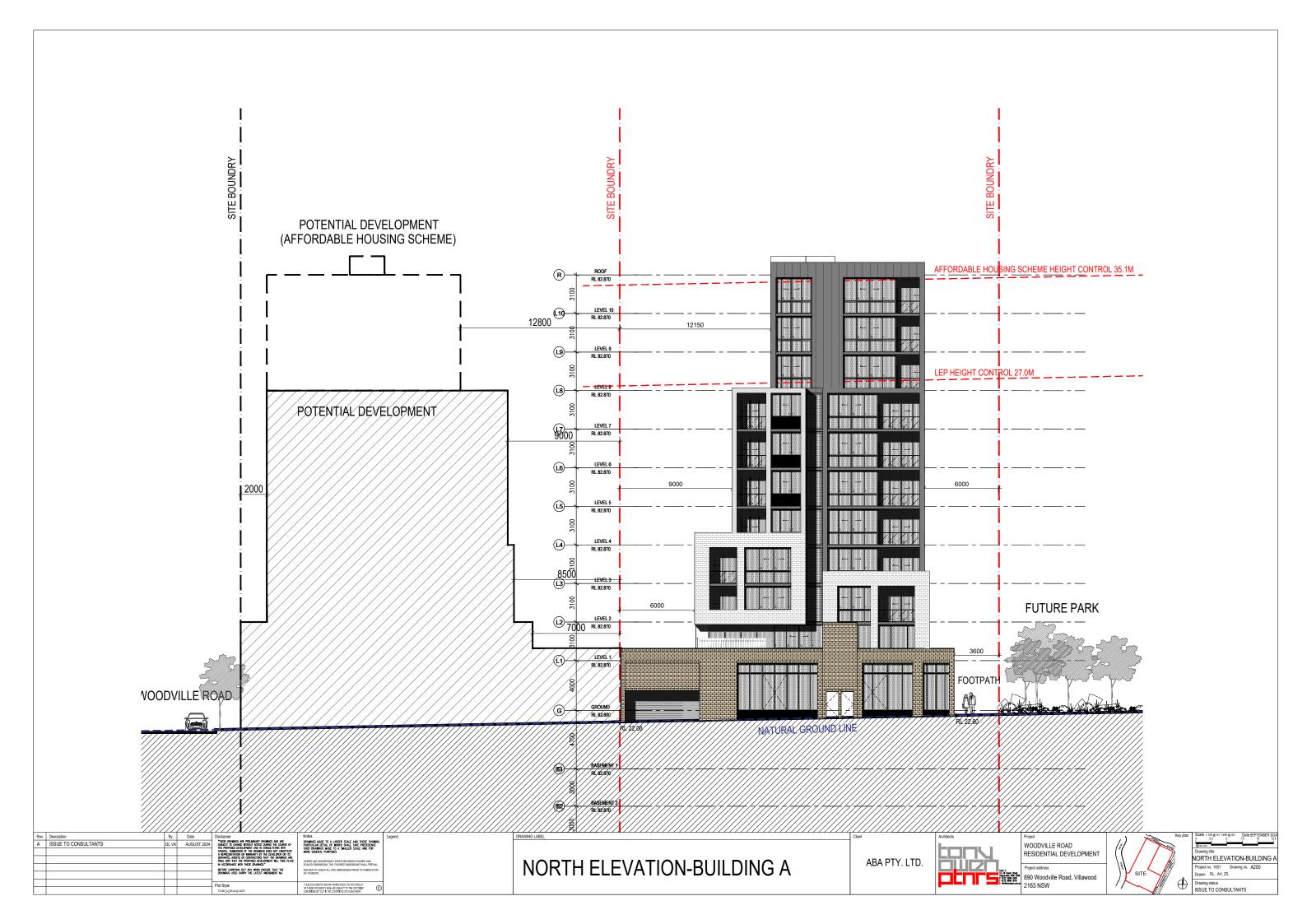
- 1 Groundwater Investigation Levels for fresh, marine, based on ANZG (2018) Australian and New Zealand Guidelines for 95% protection level for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, August 2018
- 2 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, 99% species protection level DGV is used, refer to ANZG (2018) for further guidance.
- 3 Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance
- 4 There were insufficient marine toxicity data to derive a reliable guideline value. Therefore, the freshwater DGV (low reliability) should be used with caution for marine waters, as an unknown reliability value.

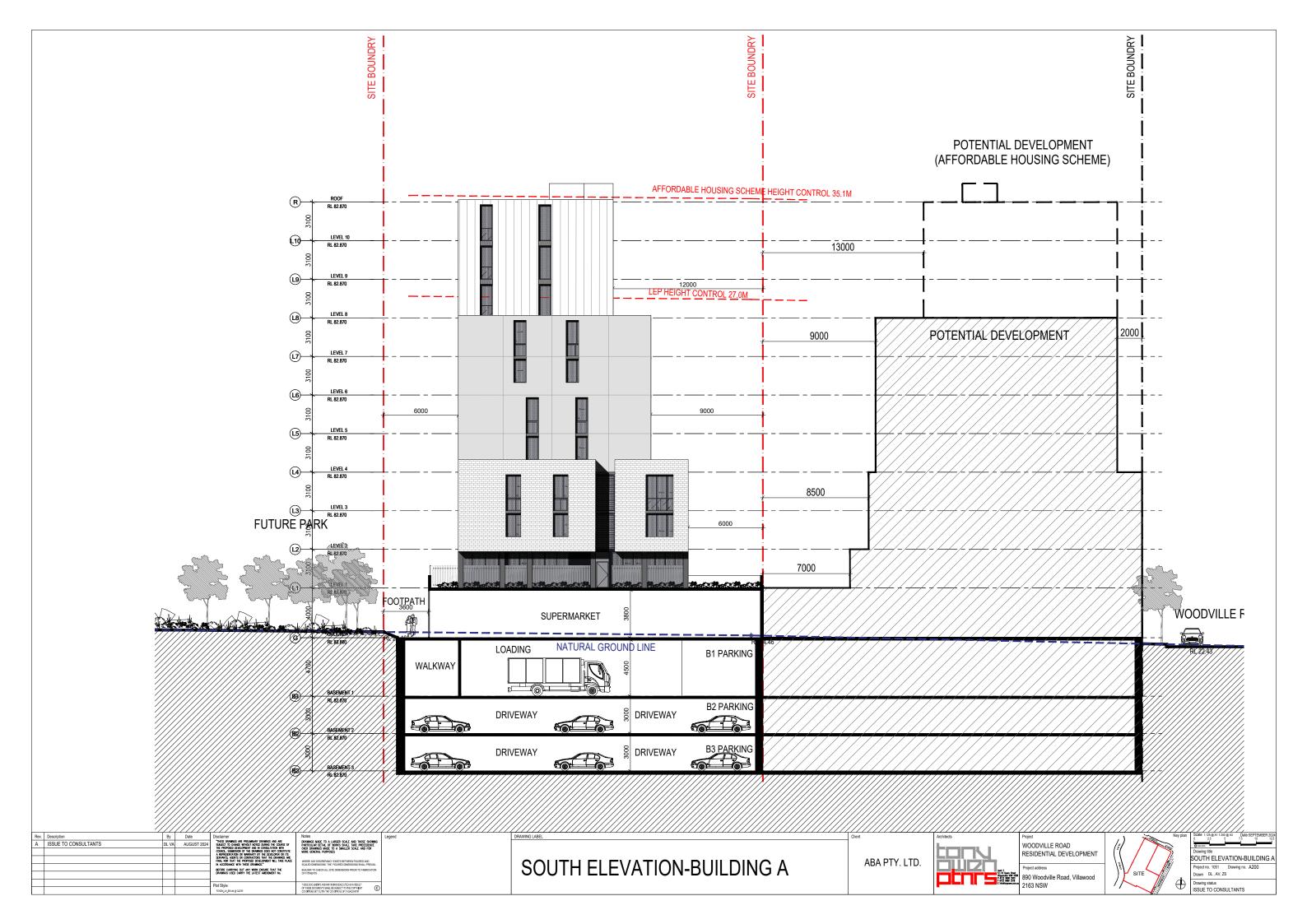

5 In lack of a criteria the laboratory PQL has been used (DEC, 2007).

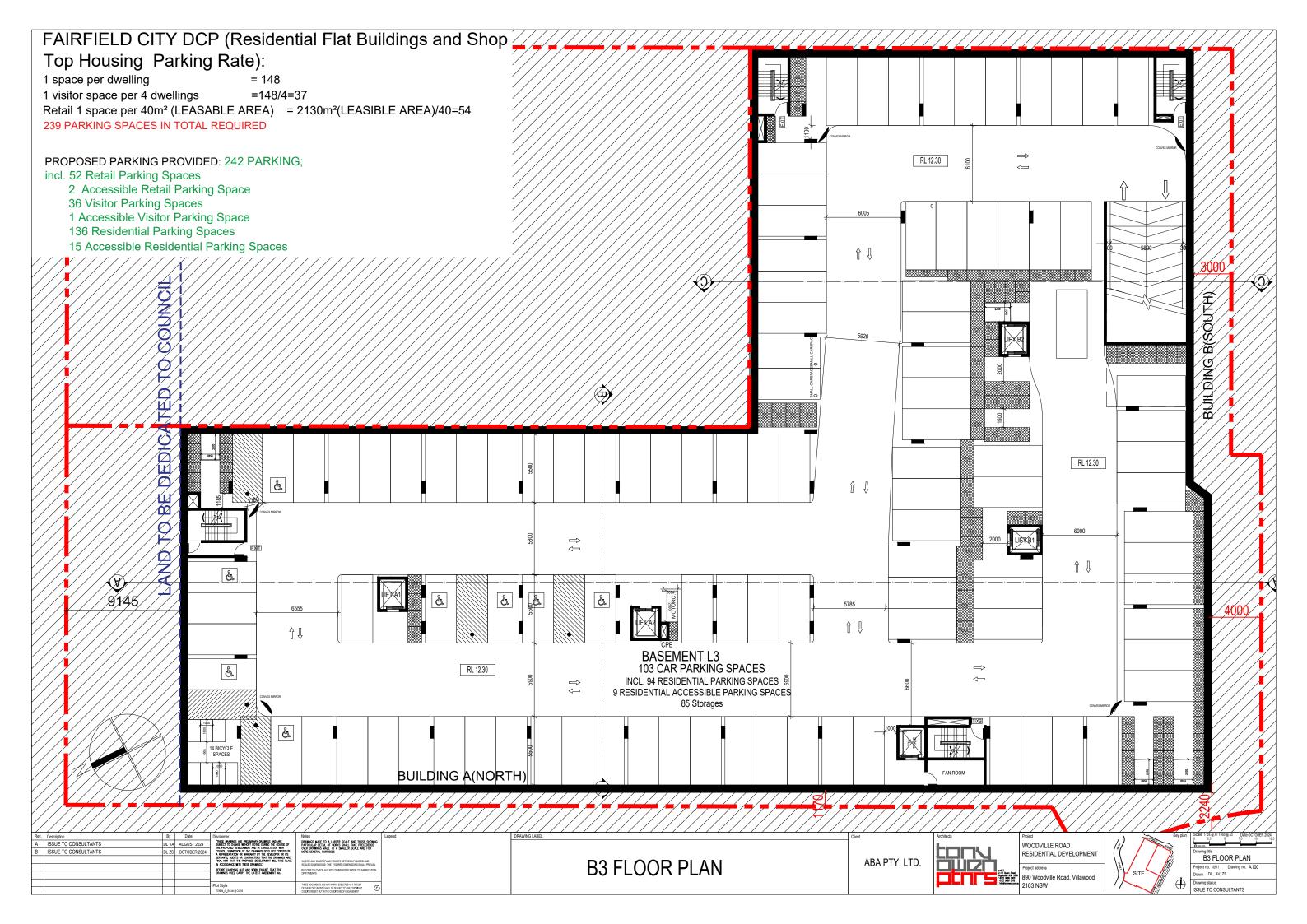
- 6 Based on NHMRC (2011 update August 2018 v.3.5) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *
- 7 Value dervied from the NJDEP (2021) vapour intrusion groundwater screening levels (GWSL)
- 8 Value dervied from the National Environmental Management Plan for PFAS 95% species protection for slightly to moderately disturbed systems.
- 9 Listed all tested PAH with detections, all the other PAH were below PQL.

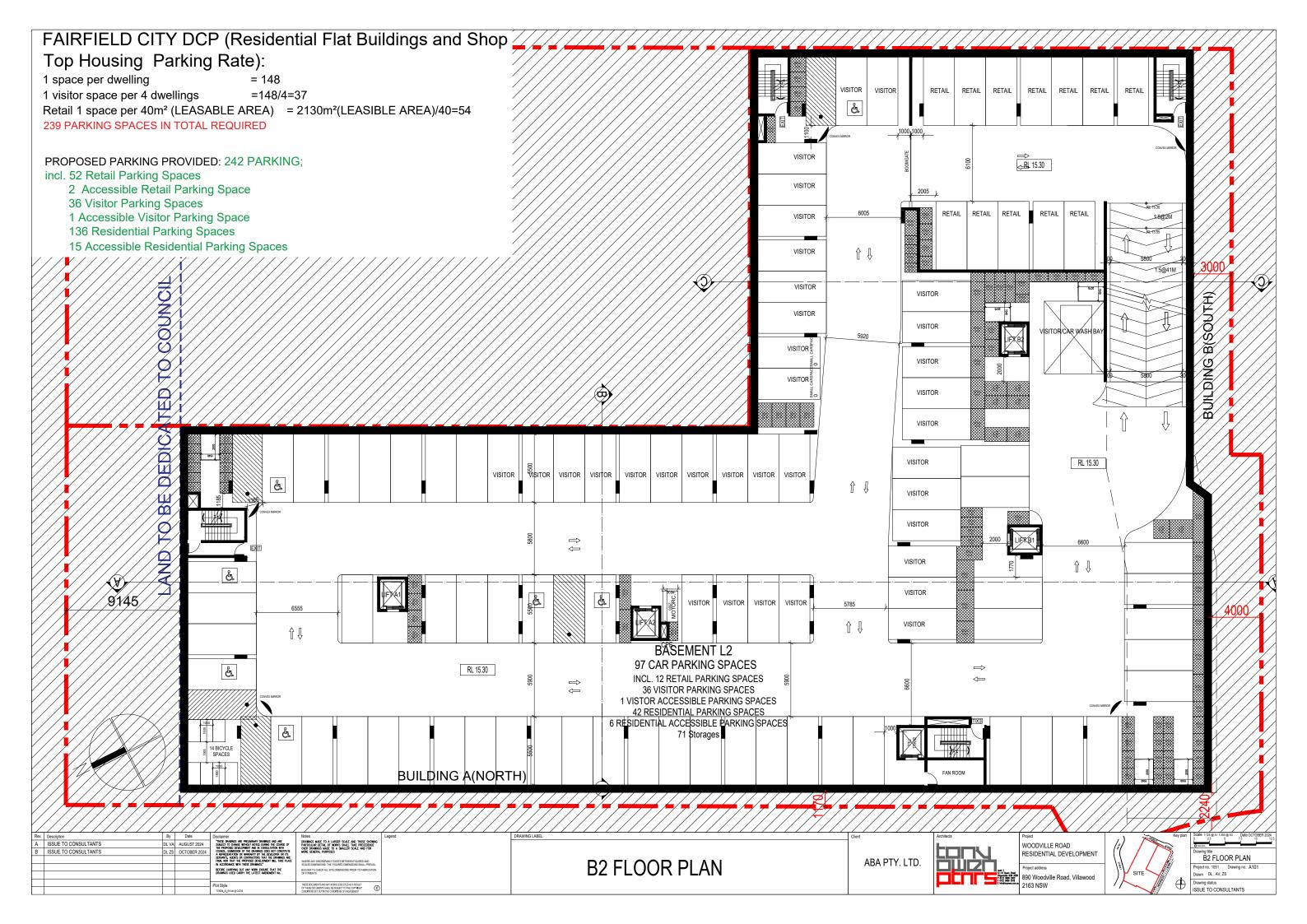
Results after silica gel clean-up.

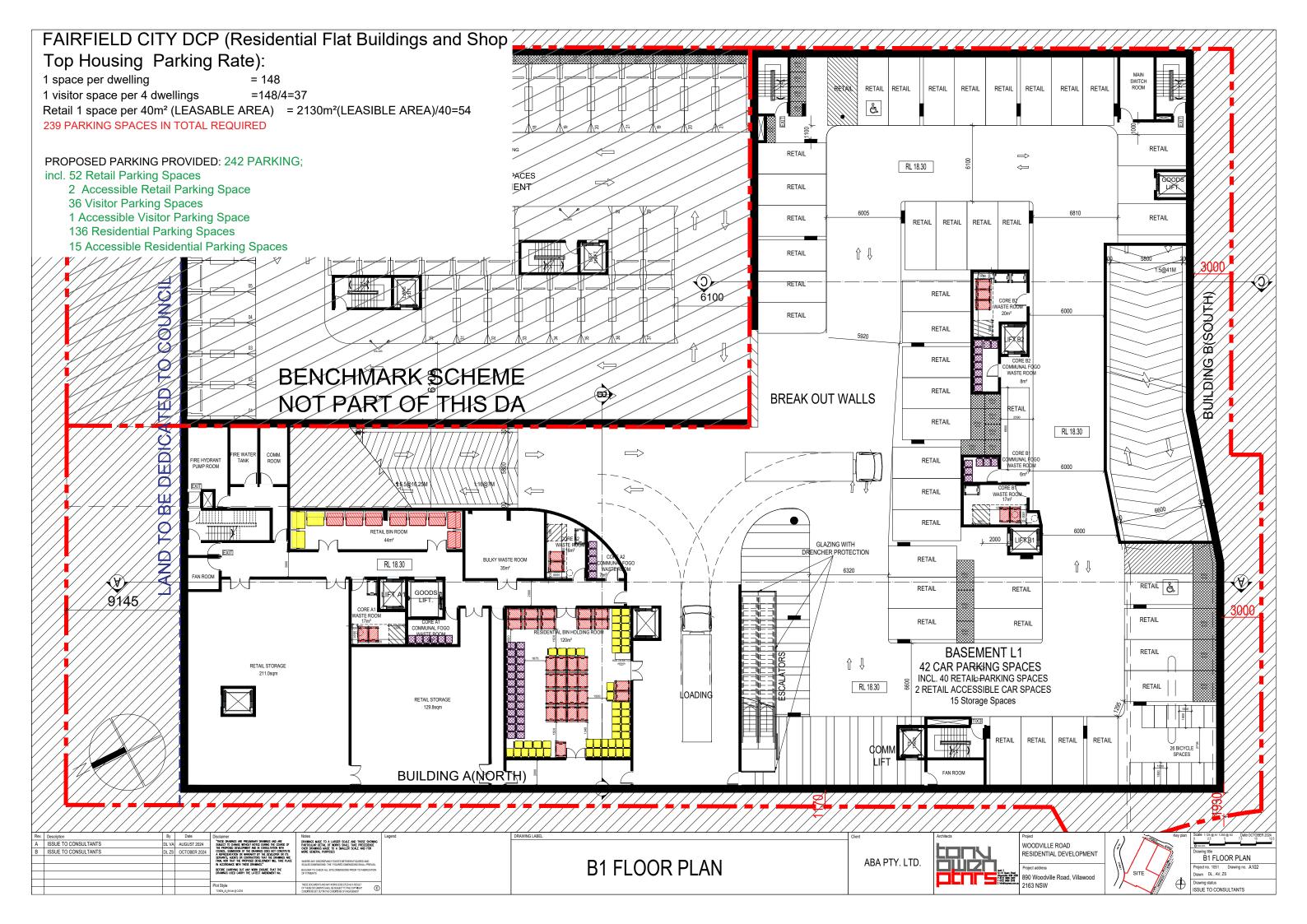


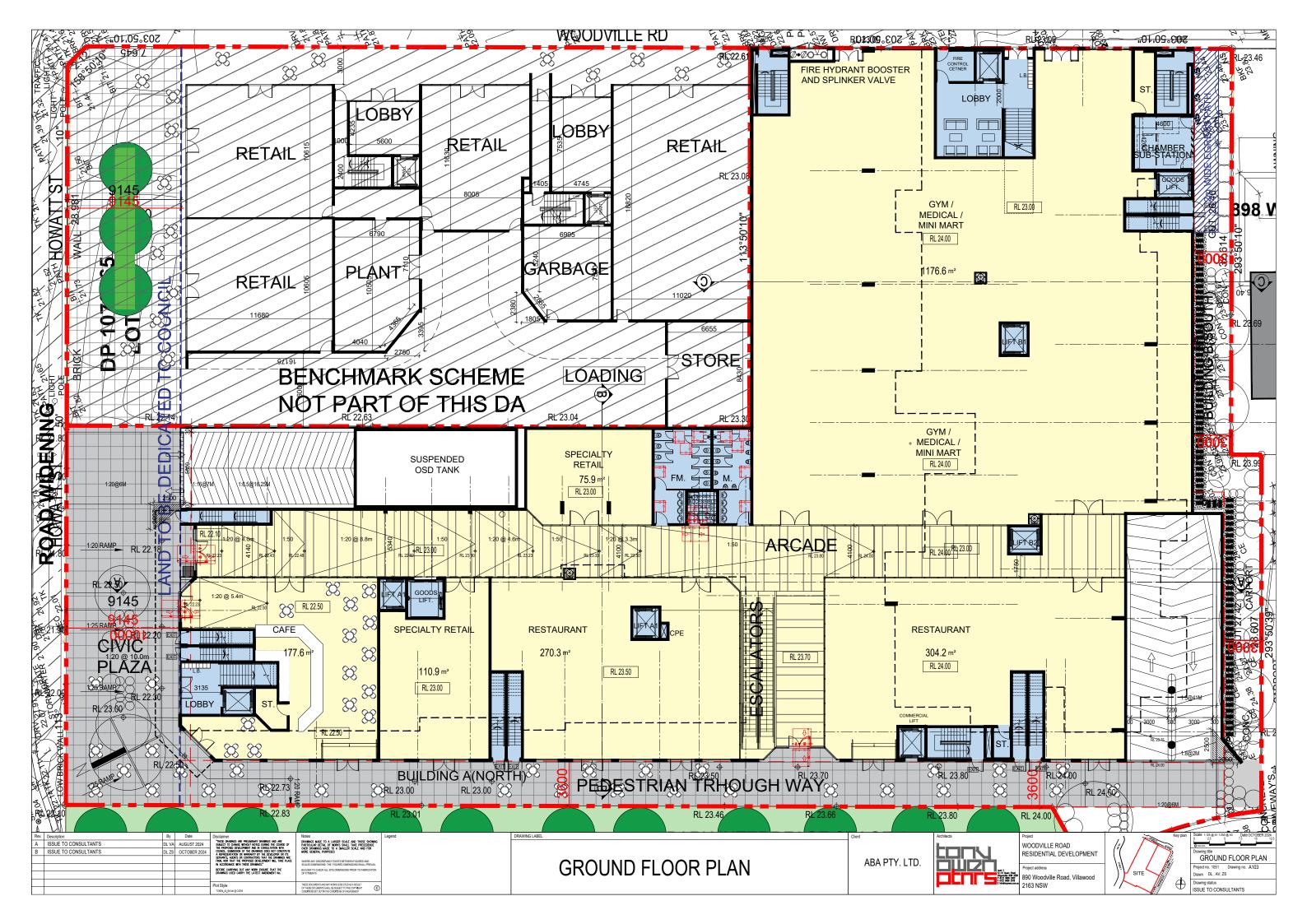

Appendix C – Proposed Development Plans

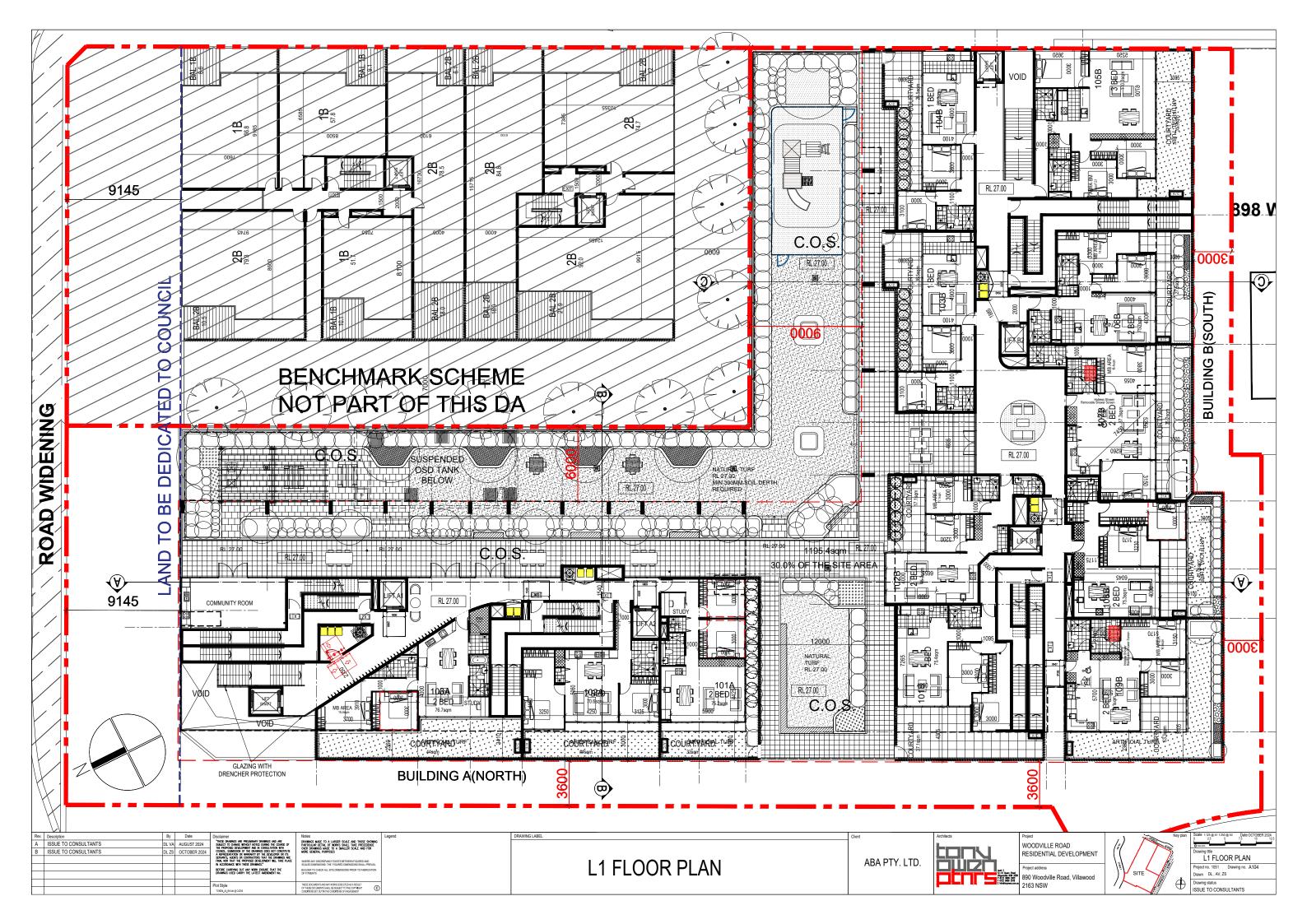


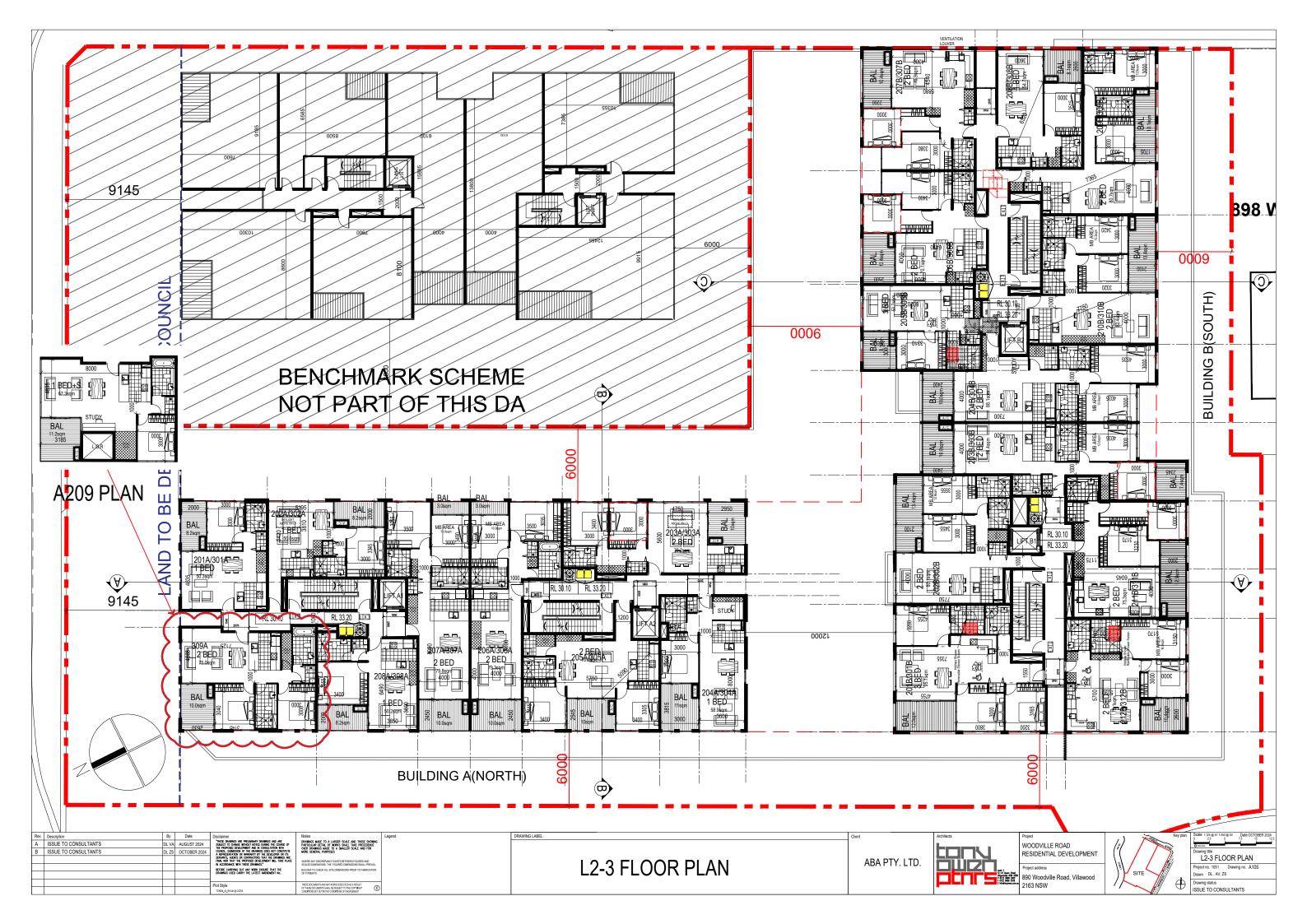


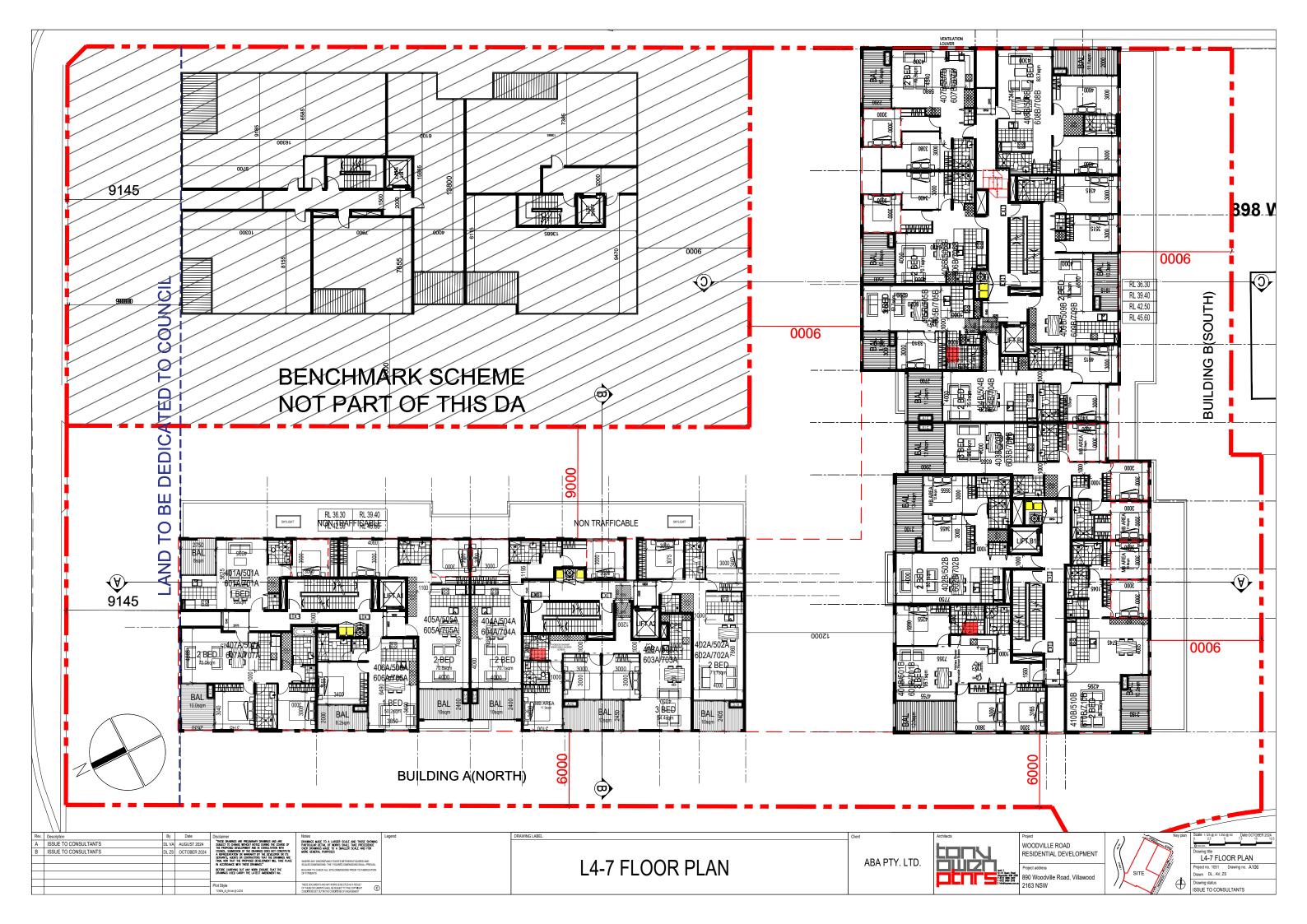


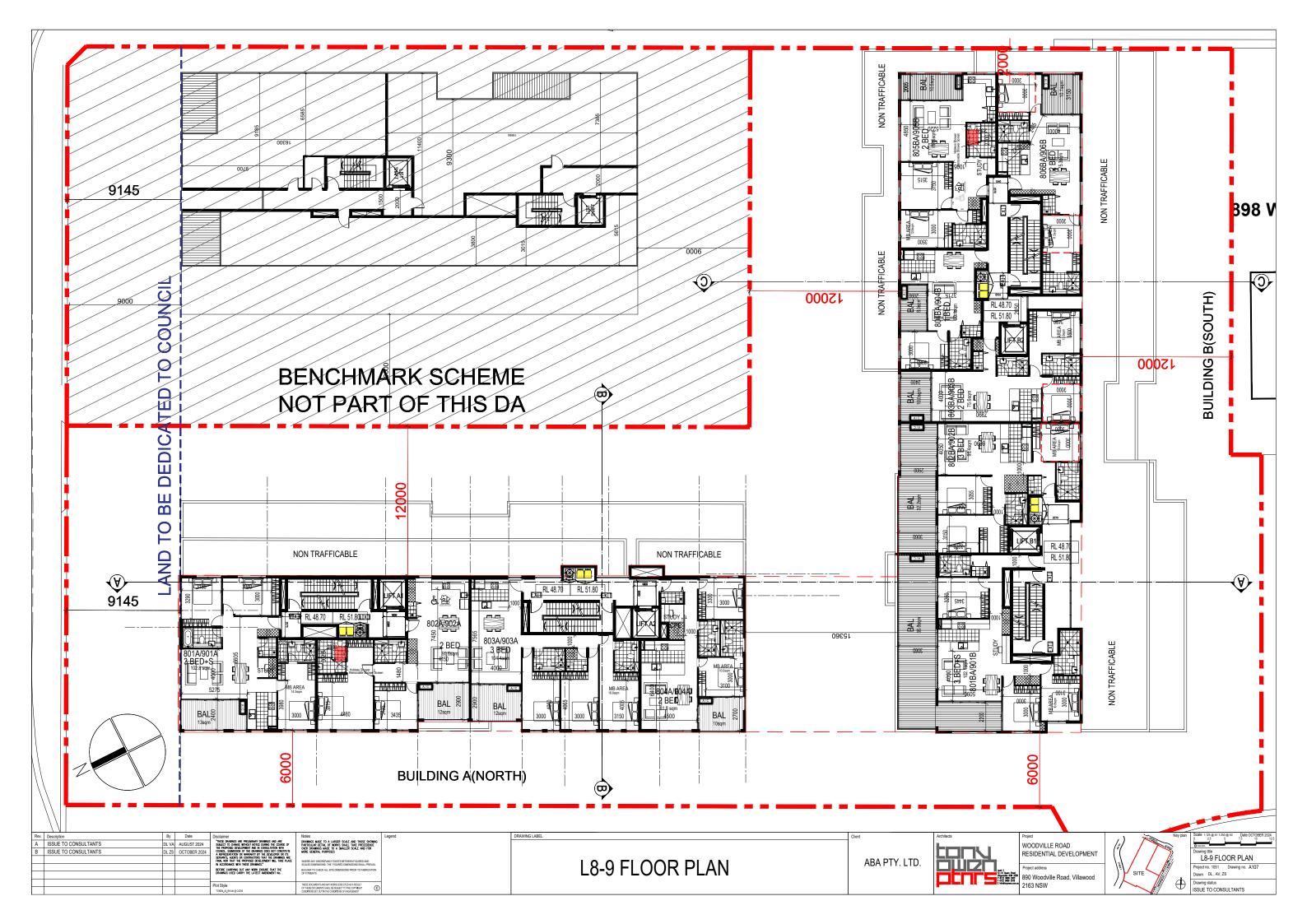


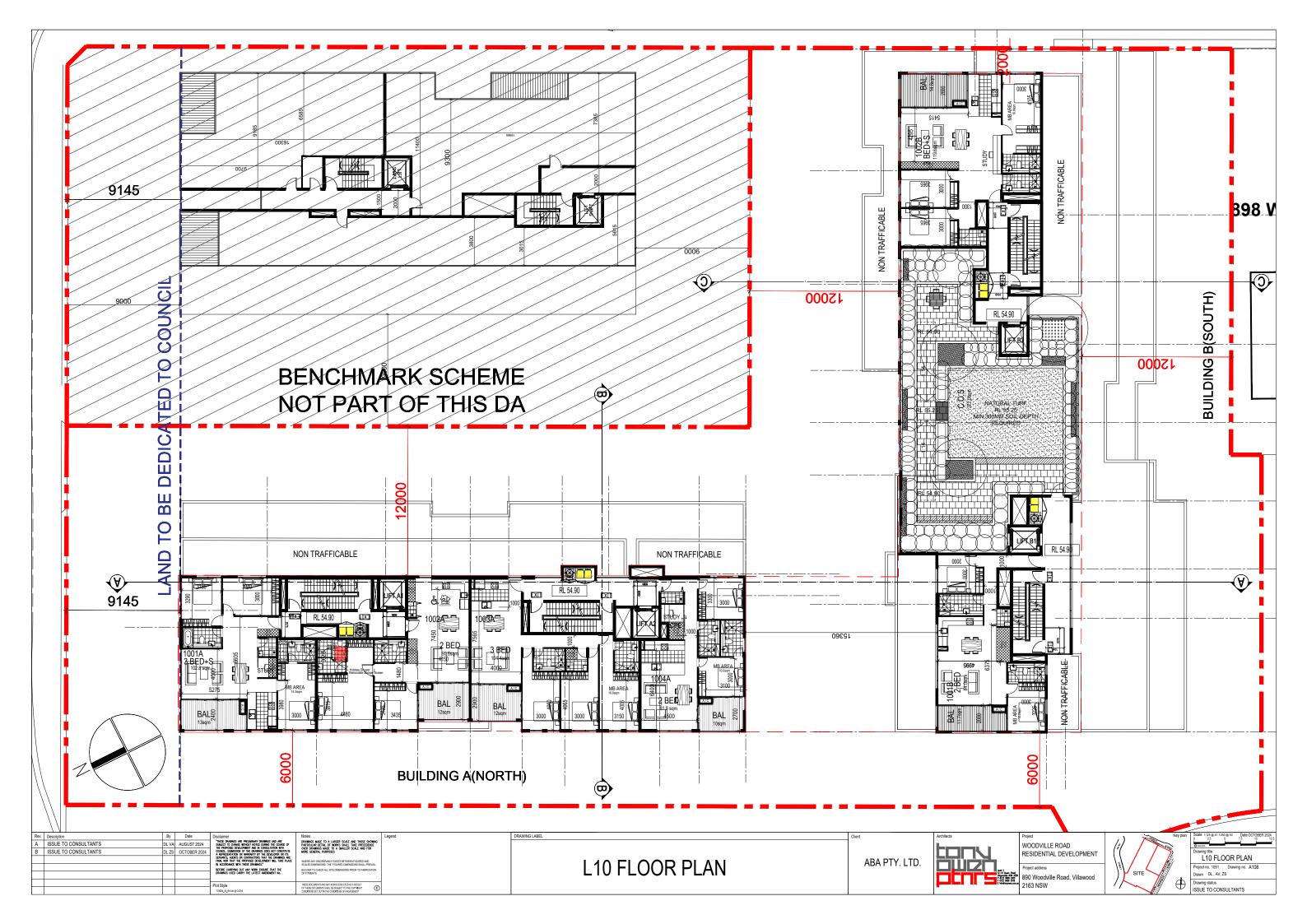


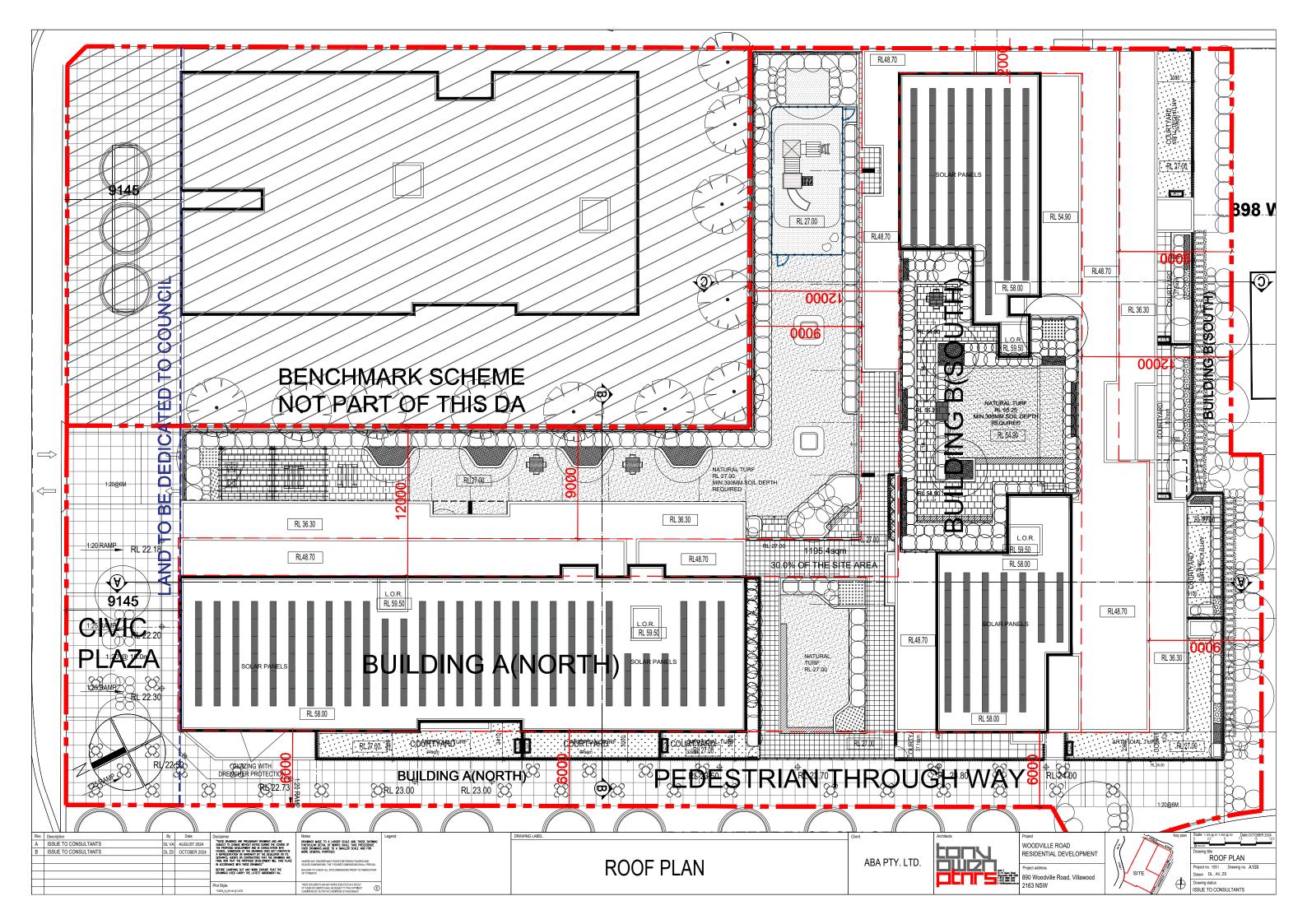












Appendix D – Groundwater Bore Search

9/30/24, 2:02 PM

home help contact	All Groundwater Site Details	
customise	ALL GROUNDWATER MAP	bookmark this page
State Overview State Overview	All data times are Eastern Standard Time Map Info	
Rivers and Streamsfavouritessearchdownload sitesfind a site	+ Groundwater Bores • Groundwater works • Telemetered bores • Logged bores • Manual bores Monitoring Bore Types Alluvial Coastal Sands Peace Nails	
Dams favourites search download sites find a site	Zoom in and try again.	n 500 metres of the selected point.
(Telemetered data) favourites search		

Appendix E – Site Photographs

Photograph 1: View of residential building at 15 Hilwa Street

Photograph 2: View of residential building at 898 Woodville Road

Photograph 3: View of commercial building at 890 & 896 Woodville Road

Photograph 4: Garden bed located at the north-eastern perimeter (890 & 896 Woodville Road)

Photograph 5: Asphalt driveway with major cracking (890 & 896 Woodville Road)

Photograph 6: Boxed floor tiles stored on western central portion, looking south-west (890 & 896 Woodville Road)

Photograph 7: A rectangular concrete patch on the floor noted along western boundary (890 & 896 Woodville Road)

Appendix F – Field Data Sheets and GPR Scanning Report

Daily Inspection / Work Summary Card -Remediation & Validation Form OP 005a (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Project Number:	E25635	Engineer Name:	12	Page:	of
Date:	17/10/24	Time ON Site:	11.15 am		
Travel Time:	1.15 hr	Time OFF Site:	3.00 pm		
Site Address/Locati	on: 15 Hild	va Street, au			2 Rd, Villawood
Climatic Conditions					
Completed Works:		<u>, , , , , , , , , , , , , , , , , , , </u>			
-		<u> </u>	•		
- (omp	sleted 1	round of G	ME and W	el had	scraveg asilh Gres
•		.			9
Comments / Issues	/ Conclusions / Furt	her Testing Required / Actio	ons to be Undertaken / Tim	ing of Actions:	
000	100				
- BH	113M	was dry	during in	vestigatio	n, did n't sample.
				3	•
	()			
- @A	lac f	som B	HOAM		
•		0			
Signed by:	<u>سرهوا</u>				

Site Add	ress:						Job Num	ber: £25635							
Client:															
Field Sta	lff:					Sampling	Location ID BH113M								
Well Loc	ation:					Round No									
MEDIUN			Groundwa	ter 🗆 S	Surface Wa	ater	□Stormwater □Other:								
SAMPLI	NG POINT	INFO													
Well Inst	allation Da	te: [0/	10 24	I			Stick up /	' down (m): $+$ 1. \circ m (+ above ground - below ground)							
Initial We	ell Depth (n	nBTOC)	10				Screen In	nterval (mBTOC): 1-10							
Previous	Sampling	Date:					Previous	SWL (mBTOC):							
PID REA	DINGS														
PID Hea	dspace (pp	m):					PID Back	ground (ppm):							
PID Brea	athing Space	e (ppm):													
PRE PU	RGE														
Total We	ell Depth (n	nBTOC):	(096				Well Hea	d Condition:							
	BTOC): ((-			Water Co	olumn (m):							
	SEPARATI		OCARBO	NS (PSH)				\backslash							
	PSH (mB1	<u> </u>					PSH Visu	ally Confirmed (Bailer):							
	ckness (mr		$\overline{}$												
Field Fil	1	,				``									
Yes (0.4	5 μm)						No	(Request lab 0.45 µm filter the sample)							
							1								
			□Bladde	er [□Peristalti	с Г	Submersit	ble Dother:							
Sampling Method Bladder Peristaltic Submersible Other: Depth of Pump Inlet (mBTOC): Fill Timer:															
Pump Pressure Regulator (psi): Discharge Timer: Weather Conditions: Cycle:															
Pump on							Pump off	time:							
			FRS				i unp on								
	ake and M		LINO				Bump Te	st Date and Time:							
	Volume	SWL	Temp	EC	Redox	DO	рН								
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)							
Stal	Stabilisation range:														
3 con	3 consecutive readings ±0.2°C ±3% ±20mV ±10% ±0.2														
OTHER	COMMEN	FS/OBSEF													
	Jol	ono	۹ ۲	LOOP	or 1	\sim	Bamp								
/`			0^{\sim}	Juni			Jun								
			-												
SIGNAT	URE:														

WATER SAMPLING FIELD SHEET

Site Addre	ess:						Job Num	ber:					
Client:							Date: (~	1/10/24					
Field Staf	f:							Location ID BH 109M					
Well Loca							Round N						
MEDIUM		.	Groundwa	ater 🗆 🛙	Surface W	ater	□Stormwater □Other:						
SAMPLIN		-											
Well Insta			10 24	L			Stick up /	ck up / down (m): + (,) m (+ above ground - below ground)					
		nBTOC):	•				-	nterval (mBTOC): $4.2 - 7.2$					
Previous			(, 2					SWL (mBTOC):					
PID REAL		Date.					11001003						
PID Head).					PID Back	ground (ppm):					
PID Breat							TID Dack						
PRE PUR		e (ppin).											
		nBTOC)	<u> </u>					d Condition:					
SWL (mB			0118					blumn (m):					
	<u>\</u>		UUARDU	INS (FOR	<u> </u>			Jolly Confirmed (Pailer):					
Depth to F					$\overline{}$		ron visl	ually Confirmed (Bailer):					
PSH Thic		n):			\mathbf{i}			`					
Field Filte													
Yes (0.45							No	(Request lab 0.45 μm filter the sample)					
PURGE A		PLE											
Sampling				er 🗸	Peristalt	ic 🗆	Submersi	ble DOther:					
Depth of I	Pump Inle	t (mBTOC):				Fill Timer						
Pump Pre	ssure Re	gulator (ps	si):				Discharge	e Timer:					
Weather (Condition	6:					Cycle:						
Pump on	time:						Pump off	time:					
WATER G	QUALITY	PARAME	TERS										
Probe Ma	ke and M	odel:					Bump Te	st Date and Time:					
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)					
12.15	0.5	7.6	21.81	20540	74.3	1.39	6.53	pale white, med. Fuebio					
12.20	1.0	8.10	21.92	20570		1.25	6.54						
12.25	l · S	8.22		20595		1.11	6.56	no sheen no oolowa					
12.30	2.0	8.29		20619	79.3	0.96	6.56	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
12.35		8.32		206 20		0.96							
		000		NO									
				-	+	+							
Ctal	licotion												
	ilisation ra	-	±0.2°C	±3%	±20mV	±10%	±0.2						
	3 consecutive readings												
	THER COMMENTS/OBSERVATIONS:												
2	AIG	ic e	$s_{0} \sim$	nle									
- •	10	~ _	JUN .	Ψ ⁽)									
SIGNATI	DE-			•									
SIGNATU	KE:												

Site Addre	ess:						Job Num	ber: E23635				
Client:							Date: 🐧	7/10/24				
Field Staf	f:						Sampling	Location ID BH107M				
Well Loca	ation:						Round No					
MEDIUM			Groundwa	ater 🗆 S	Surface Wa	ater	□Stormw	ater □Other:				
SAMPLIN		INFO										
Well Insta	allation Da		0/24				Stick up /	down (m):				
		nBTOC):						iterval (mBTOC): 5.6-8.6				
Previous			0.0					SWL (mBTOC):				
PID REAL												
PID Head							PID Back	ground (ppm):				
PID Breat		-					I ID Duon					
PRE PUR		io (ppin).										
		nBTOC):	<u>c 1, 2</u>				Well Hea	d Condition:				
SWL (mB			<u>8.40</u>					lumn (m):				
			OCARBO				Water Co					
Depth to I								ually Confirmed (Bailer):				
					$\overline{}$		POR VISU					
PSH Thic		n):	\geq			<u> </u>						
Field Filt		_/_										
Yes (0.45	P	<u>v</u>					No	 (Request lab 0.45 μm filter the sample) 				
PURGE A		PLE										
Sampling			□Bladde	er d	Peristalti		Submersit					
		t (mBTOC	-				Fill Timer					
Pump Pre	essure Re	gulator (ps	si):				Discharge	e Timer:				
Weather	Conditions	3:					Cycle:					
Pump on	time:						Pump off	time:				
WATER O	QUALITY	PARAME	TERS				_					
Probe Ma	ike and Me	odel:					Bump Tes	st Date and Time:				
Time	Volume	SWL	Temp	EC	Redox	DO	рН	Comments (colour, turbidity, odour, sheen etc.)				
	(L)	(mbtoc)		(µS/cm)	(mV)	(mg/L)	(units)	comments (colour, turbialty, ouour, sheen etc.)				
1.15	0.5	8.15	23.95		37.3	0.90	6.66					
1.20	ر,۵	8-22		23630	38.0	0.80	6.64	Pale brown, Euribid, no adour				
1.25	۲.5	8.29	24.30	23600	38.6	0.71	6.64	no sheen				
1.30	2.0	8.35	24.53	23590	39.5	0.65	6.63					
1.35	2.5	8.40	24.53	23590	39.5	0.65	6.63					
						1						
			1	1								
Stab	Stabilisation range:											
3 consecutive readings ±0.2°C ±3% ±20mV ±10% ±0.2												
		-	RVATIONS	s.		<u> </u>						
Nad		⊆ں ∟ ⊀دا د	rle SCI									
- No	plash	C 601	20	ing le								
SIGNATU	JRE:											

ABN: 84 622 814 813 admin@sslocators.com.au

Site Report
Smartscan Rep
Dylan Fitzharris
Date
30/10/2024
Client Company
Ei Australia
Client Name
Sean
Site Address
890 Woodville Road, Villawood NSW
Description of Work Required
Scope: Service clearing of 2-3 hand auger locations and one GPR survey of potential tank area.
Description of Work Completed
Completed visual site inspection
Completed review of available plans
Completed EMI tracing
Completed induction scans
Completed passive scans
Completed QL-B/QL-D markup
Completed GPR scans
Completed borehole clearance for hand augers.
Equipment Used
EMI Locator
Utility GPR
Method Used
Reviewed DBYD
Site Inspection
GPR Scans
Inductive Loc.
Direct Loc.
Passive Scans
DBYD Number
Na

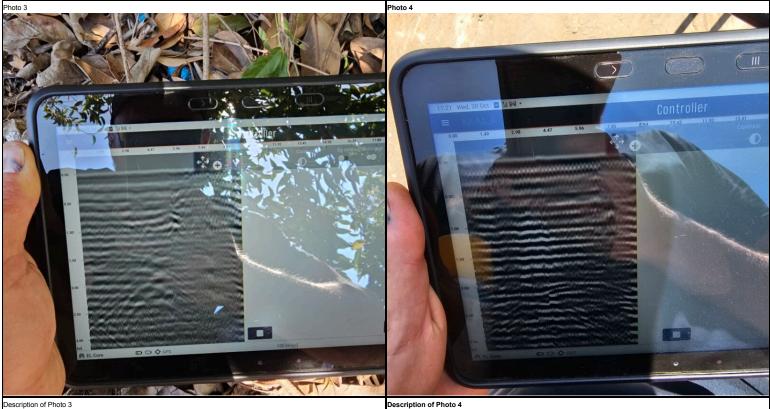
ABN: 84 622 814 813 admin@sslocators.com.au

Site Markings

EOT – End of trace – Unable locate past this point due to loss of signal or end of service UTO - Unable to lift pit FOD - Full of debris FOW - Full of water MT - Empty conduits EU - Electricity (Orange) - (414 - 11k HV) TR - Electricity transmission (Red) WM - Water main (Blue) WY - Water service (Blue) GM - Gas main (Yellow LG, MG, HPG, TG) GY - Gas (Yellow) SW - Storm water (Green) SM - Sewer (purple) TN - Telstra or Comms (White) OU - Optic fibre (White) TY - Telstra service (White) RMS - RMS signal cables (Red) UP or ? - Unknown service (Pink) Quality Levels Australian Standards – AS 5488-2013 Classification of Subsurface Utility Information (SUI) Quality Level A (QL-A) QL-A is the positive identification and location of a service through potholing and has an absolute tolerance of +/- 50mm vertically and horizontally Quality Level B (QL-B) QL-B is achieved through electronic tracing and is ONLY accurate to +/- 300mm horizontally and +/- 500mm vertically Quality Level C (QL-C) QL-C location is derived from visible evidence of utility assets (pit lids, valves, hydrants etc) ONLY. There is NO verification that the service is directly under the visible feature, nor in a straight line. Quality Level D (QL-D) QL-D is an approximate location ONLY derived from DBYD drawings/ existing records and does NOT encompass any field verification involving direct measurement. Additional Smart Scan Quality levels Quality Level G (QL-G) QL-G Asset located using just GPR Quality Level P (QL-P) QL-P Asset located using Passive mode only Disclaimer Smartscan Locators Pty Ltd is engaged in accordance with the following conditions. 1. The client is solely responsible for meeting duty of care and minimum clearance obligations of each Utility Provider and complying with all workplace health and safety legislation. 2. The client acknowledges that electronic detection will be carried out to the quality levels as stated per AS 5488 3. Electromagnetic Radio Frequency devices may be affected by other influences including environment conditions, Utility congestion or material of target. These utilities may be considered untraceable. 4. Our locating is to be used as a guide only and no guarantee is made for the exact location and depth of Utility. All services should be exposed by non destructive potholing methods prior to excavation. 5. Smartscan Locators does not accept liability from damage caused from reliance upon services provided and all responsibility remains with the client. Client not on site Smartscan Rep Signature

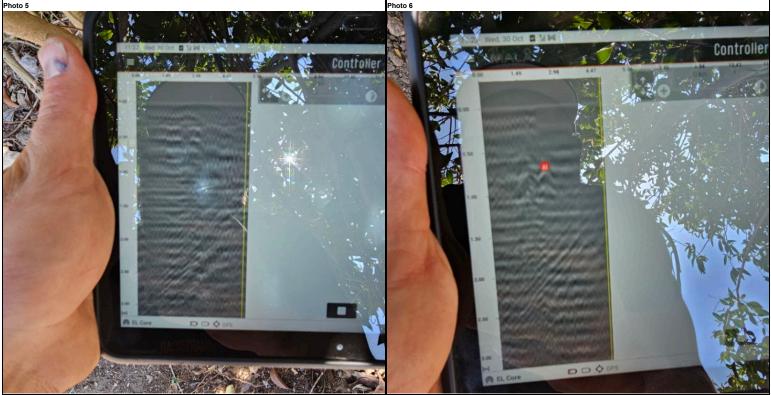
ABN: 84 622 814 813 admin@sslocators.com.au

Description of Photo 1


The raw GPR data depicted in this image was collected by traversing the GPR unit from north to south. Notably, a 13-meter-long hyperbola is visible at the 1.500-meter mark at its apex. This image provides the clearest depiction of an anomaly at a depth of 1.500 meters; however, it was not corroborated by additional scans. Cross-sectional scans did not validate the parameters associated with the potential underground storage tank.

Description of Photo 2 Location of GPR scans :Note compass top right hand corner

ABN: 84 622 814 813 admin@sslocators.com.au


This scan was conducted by traversing north to south, revealing variations in the subsurface material. Although the details are not entirely clear, there are indications of an anomaly that merits further investigation.

Additional north/south scan.

ABN: 84 622 814 813 admin@sslocators.com.au

Description of Photo 5


The scan was conducted traversing from east to west, highlighting notable differences in the subsurface material. While the image lacks distinct clarity, it suggests the presence of an anomaly or variation in the subsurface composition. Description of Photo 6

The scan was conducted from east to west, revealing evidence of unknown material at a depth of 700 mm.

ABN: 84 622 814 813 admin@sslocators.com.au

Description of Photo 7

The GPR data collected from multiple scans reveals significant insights into the subsurface materials. One notable scan, conducted from north to south, indicates variations in the subsurface composition, suggesting the presence of an anomaly. A previous scan traversing east to west also identified evidence of unknown material at a depth of 700 mm. While the clarity of the images is limited, the findings point to potential underground features that warrant further exploration and analysis.

Appendix G – Borehole Logs

BH ID: BH101

			90, 8	896 &	898 W	/oodv	ille Road, Villawood NSW	Started			ber 2024
Clien Job N		ABA Square Pty Ltd E25635.E02						Complete			ber 2024 Date 10 October 2024
Shee		1 of 1						Review B		VI	Date
		ntractor Hartgeo					Surface RL -	Latitude	-		
Plant	t	Ute-Moun	ted I	Rig			Inclination 90°	Longitude	e -		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		BH101_0.10-0.20 PID = 2.2		0.00		_	FILL: Silty SAND: fine to coarse grained, brown, No od	our			FILL
AD/T	GWNE	BH101_0.40-0.50		0.30			Silty CLAY: medium to high plasticity, orange mottled re odour	ed, No	D	-	RESIDUAL SOIL
							Terminated at 0.60m. Target Depth Reached.				

BH ID: BH102

Loca Clien Job N	t	15 Hilwa Street and 89 ABA Square Pty Ltd E25635.E02	90, 8	396 &	898 W	/oodv	ille Road, Villawood NSW	Started Complete Logged B	ed 1	0 Octo	ber 2024 ber 2024 Date 10 October 2024	
Shee		1 of 1						Review B			Date	
		ntractor Hartgeo					Surface RL -	Latitude	-			
Plan	: 22	Ute-Moun		Rig I			Inclination 90°	Longitud	e -	~		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	, DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS	
				0.00	0 0 0 0 0 0 0 0	_	CONCRETE: 100mm thick				CONCRETE	
AD/T	GWNE	BH102_0.20-0.30 PID = 0.1		0.10		_	FILL: Silty SAND: fine grained, brown, No odour		D	-		
	0	BH102_0.50-0.60				_	Silty CLAY: medium to high plasticity, orange mottled red, No odour				RESIDUAL SOIL	
							Terminated at 0.70m. Target Depth Reached.					
				-		_						

BH ID: BH103

Loca Clien		15 Hilwa Street and 89 ABA Square Pty Ltd	90, 8	396 &	898 W	/oodv		Started 10 October 2024 Completed 10 October 2024				
Job I		E25635.E02						Logged By		V	Date 10 October 2024	
Shee Drilli		1 of 1 ntractor Hartgeo						Review B	У _		Date	
Plan		Ute-Moun	ted I	Rig				Longitude	e -			
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS	
		BH103_0.10-0.20 PID = 0.0		0.00		-	FILL: Silty SAND: fine grained, brown, with rootlets, No	odour			FILL	
AD/T	GWNE	BH103_0.40-0.50		0.30		-	Silty CLAY: medium to high plasticity, orange mottled re- odour	d, No	D	-	RESIDUAL SOIL	
							Terminated at 0.60m. Target Depth Reached.					

BH ID: BH104

Locat Clien Job N Shee	t Io.	15 Hilwa Street and 89 ABA Square Pty Ltd E25635.E02 1 of 1	90, 8	96 &	898 W	/oodv	ille Road, Villawood NSW	Started Complete Logged B Review B	ed 10 y JN	0 Octo	bber 2024 bber 2024 Date 10 October 2024 Date
		ntractor Hartgeo					Surface RL -	Latitude	-		2010
Plant		Ute-Moun	ted I	Rig			Inclination 90°	Longitude	e -		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		BH104_0.10-0.20 PID = 2.0		0.00		_	FILL: Silty SAND: fine grained, brown, with rootlets, No	odour			FILL
AD/T	GWNE	BH104_0.40-0.50		0.30 ⁻ - -		-	Silty CLAY: medium to high plasticity, orange mottled re odour	ed, No	D	-	RESIDUAL SOIL
							Terminated at 0.70m. Target Depth Reached.				

BH ID: BH105

Loca ⁻ Clien		15 Hilwa Street and 89 ABA Square Pty Ltd	90, 8	96 &	898 W	/oodv	ille Road, Villawood NSW	Started Complete		10 October 2024 10 October 2024			
Job N		E25635.E02 1 of 1						Logged B		N	Date	10 October 2024	
Shee Drilli		ontractor Hartgeo					Surface RL -	Review B Latitude	<u>у</u>		Date		
Plan	t	Ute-Moun	ted	Rig			Inclination 90°	Longitude	e -				
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	B DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	& O	ERIAL ORIGIN BSERVATIONS	
AD/T	GWNE	BH105_0.20-0.30		-		-	FILL: Silty SAND: fine grained, brown, No odour		D	_	FILL		
A	ß	BH105_0.80-0.90		- 0.70 - - 1- -			Silty CLAY: medium to high plasticity, orange mottled re odour Terminated at 0.90m. Target Depth Reached.	ed, No			RESIDUAL SC	IL	
				- - - - - - - - - - - - - - - - - -									

BH ID: BH106

Clien Job N	t Io.	ABA Square Pty Ltd E25635.E02	90, 8	396 &	898 W	/oodv	ille Road, Villawood NSW	Started Complete Logged B	ed 10 y JN	0 Octo	ber 2024 ber 2024 Date 10 October 2024
Shee		1 of 1 Intractor Hartgeo					Surface RL -	Review B	У		Date
Plant		ntractor Hartgeo Ute-Moun	tod	Pig			Inclination 90°	Longitude	-		
		Ote-Would						Longitude		×۲	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		BH106_0.20-0.30 PID = 1.8		0.00		_	ASPHALT: 10mm thick FILL: Gravelly SAND: fine to coarse grained, grey-brow sub-angular to angular gravels, No odour	vn, with			ASPHALT // FILL
AD/T	GWNE	BH106_0.70-0.80		0.60		-	Gravelly CLAY: medium plasticity, orange mottled red, angular to angular gravels, No odour	with sub-	D	-	RESIDUAL SOIL
<u> </u>				1-	000	_	Terminated at 1.00m. Target Depth Reached.				

BH ID: BH107M

Locat			90, 8	396 &	898 W	'oodv	ille Road, Villawood NSW	Started Complete			ber 2024 ber 2024	
Jop N		ABA Square Pty Ltd E25635.E02						Logged B		M OCIU		10 October 2024
Shee		1 of 1						Review B	у		Date	
		ntractor Hartgeo		. .			Surface RL -	Latitude	-			
Plant		Ute-Mour	-	Rig			Inclination 90°	Longitude				
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	, DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATE & OBS	RIAL ORIGIN SERVATIONS
	-			0.00		-	ASPHALT: 200mm thick				ASPHALT	
		BH107M_0.30-0.40 PID = 2.6		0.20		-	FILL: Gravelly SAND: fine grained, grey-brown, with su to angular gravels, No odour	ıb-angular			FILL	
AD/T	GWNE	BH107M_0.80-0.90		0.70 1- 1- - - - - - - - - - - - - -			Silty CLAY: medium to high plasticity, orange mottled re odour SHALE: extremely weathered seams, No odour Terminated at 8.60m. Refusal on bedrock.	ed, No	D		RESIDUAL SOIL	
					-	-						

MONITORING WELL LOG BH ID: BH107M

Loca Clier Job I Shee	ABA Square I No. E25635.E02			896	& 898 Woodville Road, Villawood NSW		Started Completed Logged By Review By	10 October 2024 10 October 2024 JM Date Date	10 October 2024
Drilli	ing Contractor H	lartg	eo		Surface RL -		Latitude	-	
Plan	t U	Jte-N	lounte	d Rig	Inclination 90°		Longitude	-	
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKFILL DETAILS		STANDPIPE DETAILS
		0.80		-	ASPHALT: 200mm thick		Steel Cover at Surface		Well Stickup =-0.05m
	BH107M_0.30-0.40 PID = 2.6	0.20		-	FILL: Gravelly SAND: fine grained, grey-brown, with sub-angular to angular gravels, No odour				
	FID - 2.0	-		-					
GWNE	BH107M_0.80-0.90	0.70			Silty CLAY: medium to high plasticity, orange mottled red, No odour	D	Cuttings 0.05m - 4.20m		0.05m - 5.60m PVC casing (50mm Ø)
		4.70 			SHALE: extremely weathered seams, No odour		Bentonite 4.20m - 5.20m Sand 5.20m - 8.60m		5.60m - 8.60m PVC screen (50mm Ø)

BH ID: BH108

Client ABA Square Pty Ltd Completed 10 October 2024 Job No. E25635.E02 Logged By JM Date 10 October Sheets 1 of 1 Review By Date Oate 10 October Prilling Contractor Hartgeo Surface RL - Latitude - - Plant Ute-Mounted Rig Inclination 90° Longitude - -	tober 2024
Sheets 1 of 1 Review By Date Drilling Contractor Hartgeo Surface RL - Latitude -	tober 2024
Drilling Contractor Hartgeo Surface RL - Latitude -	
Plant Ute-Mounted Rig Inclination 90° Longitude -	
WATERIAL DESCRIPTION	RIGIN TIONS
L U ASPHALT: 10mm thick BH108_0.20-0.30 0.00 PID = 0.1 0.00	/
Image: Sector of the sector	

BH ID: BH109M

Clien Job N	t Io.	ABA Square Pty Ltd E25635.E02	90, 8	96 &	898 W	/oodv		Started Complete Logged By	ed 10 y JN	0 Octo	ber 2024 ber 2024 Date 10 October 2024	
Shee Drilli		1 of 1 ntractor Hartgeo						Review B	у _		Date	
Plant	t Ute-Mounted Rig							Longitude	<u> </u>			
	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS	
AD/T	GRG	BH109M_0.20-0.30 PID = 2.5 BH109M_1.00-1.10	SAM	0.00 0.90 0.90 0.90 			FILL: SAND: fine grained, pale brown, with rootlets, No Silty CLAY: medium to high plasticity, orange mottled reodour SHALE: extremely weathered seams, No odour		D	COT	FILL RESIDUAL SOIL WEATHERED ROCK	
			Thi	10-	Ļ	-						

MONITORING WELL LOG BH ID: BH109M

Loca Clier Job I Shee	ABA Square I No. E25635.E02			, 896	i & 898 Woodville Road, Villawood NSW		Started Completed Logged By Review By	10 October 2 10 October 2 JM	10 October 2024
Drilli	ing Contractor H	lartg	eo		Surface RL -		Latitude	-	
Plan	t (lte-N	lounte	d Rig	Inclination 90°		Longitude	-	
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE	BACKFILL DETAILS		STANDPIPE DETAILS
	BH109M_0.20-0.30	0.00_		-	FILL: SAND: fine grained, pale brown, with rootlets,) No odour				Well Stickup =1.0m
	PID = 2.5 BH109M_1.00-1.10	0.90 			Silty CLAY: medium to high plasticity, orange mottled red, No odour		Cuttings 0.00m - 3.00m		-1.0m - 4.20m PVC casing (50mm Ø)
GWNE		4. <u>90</u> 			SHALE: extremely weathered seams, No odour	D	Bentonite 3.00m - 4.00m Sand 4.00m - 7.20m		4.20m - 7.20m PVC screen (50mm Ø)
					Terminated at 8.10m. Target Depth Reached.		Hole Cave in 7.20m - 8.10m		

BH ID: BH110

Location		90, 8	96 &	898 W	′oodv		rted			ber 2024
Client	ABA Square Pty Ltd						mpleted			ber 2024
Job No.	E25635.E02						ged By		Л	Date
Sheets	1 of 1						view By			Date
	ontractor Hartgeo						itude	-		
Plant ⊯	Ute-Moun	·	KIg			Inclination 90° Lon	ngitude	-	` .	
METHOD GROUND WATER	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	BUITSION	CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
	BH110_0.10-0.20 PID = 2.1		0.00 0.01_		_	ASPHALT: 10mm thick FILL: SAND: fine grained, pale brown, with rootlets, with angu to sub-angular gravels, No odour	gular			ASPHALT
AD/T GWNE	BH110_0.40-0.50		0.30		-	Silty CLAY: medium to high plasticity, orange mottled red, No odour		D	-	RESIDUAL SOIL
	-		1-		_	Terminated at 1.00m. Target Depth Reached.				

BH ID: BH111

Loca Clien Job N	t	<pre>o. E25635.E02 s 1 of 1</pre>				/oodv	ille Road, Villawood NSW	Started Complete Logged B	ed 1	0 Octo	ber 2024 ber 2024 Date 10 October 2024
Shee								Review B	у		Date
		ntractor Hartgeo	+ od I	Dia			Surface RL - Inclination 90°	Latitude	-		
Plant	L L L L	Ute-Moun		Rig			inclination 90	Longitud		22	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	l RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		BH111_0.10-0.20 PID = 3.0		0.00 0.00		-	ASPHALT: 10mm thick FILL: SAND: fine grained, pale brown, with rootlets, No	odour			ASPHALT /
AD/T	GWNE	BH111_0.60-0.70		- 0.50 ⁻ - - -			Silty CLAY: medium to high plasticity, orange mottled re odour	ed, No	D	-	RESIDUAL SOIL
				1-			Terminated at 1.00m. Target Depth Reached.				

BH ID: BH112

Shee		1 of 1						Review By	y		Date
		ntractor Hartgeo						Latitude	-		
Plant		Ute-Moun		Rig			Inclination 90° I	Longitude	9 -	<u> </u>	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		BH112_0.10-0.20 PID = 2.9		0.00		_	FILL: SAND: fine grained, pale brown, with rootlets, No o	odour			FILL
AD/T	GWNE	BH112_0.40-0.50		0.30		-	Silty CLAY: medium to high plasticity, orange mottled red odour	I, No	D	-	RESIDUAL SOIL
				1-		-	Terminated at 1.00m. Target Depth Reached.				
			Thi				ead in conjunction with El Australia's accompany	ing overla			

BH ID: BH113M

Loca Clien Job N	t	15 Hilwa Street and 8 ABA Square Pty Ltd E25635.E02	90, 8	96 &	898 W	/oodv	Cor	arted mpleteo gged By	1 10) Octo	ber 2024 ber 2024 Date 10 October 2024	
Shee		1 of 2						view By			Date	
		ntractor Hartgeo						titude	-			
Plant		Ute-Mour		Rig			Inclination 90° Lon	ngitude				
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS	
		BH113M_0.10-0.20 PID = 3.2		0.00		-	FILL: Gravelly SAND: fine grained, grey-brown, with sub-ang to angular gravels, No odour	ngular			FILL	
AD/T	GWNE	BH113M_0.60-0.70		0.50 1- 2- 3- 3- 4- 4- - - - - - - - - - - - - -			SHALE: extremely weathered seams, No odour	pale	D		RESIDUAL SOIL	

BH ID: BH113M

Loca Clier Job I Shee	ıt No.	15 Hilwa Street and 89 ABA Square Pty Ltd E25635.E02 2 of 2	90, 8	96 &	898 W	/oodv	ille Road, Villawood NSW	Started Complete Logged B Review B	ed 1 y JN	0 Octo	bber 2024 bber 2024 Date 10 October 2024 Date
		ontractor Hartgeo					Surface RL -	Latitude	-		
Plan		Ute-Moun	ted I	Rig			Inclination 90°	Longitud	e -		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
				-	-	_	Terminated at 10.00m. Target Depth Reached.				

MONITORING WELL LOG BH ID: BH113M

Loca Clien Job N Shee	ABA Square F No. E25635.E02			896	& 898 Woodville Road, Villawood NSW		Started Completed Logged By Review By	10 October 10 October JM	10 October 2024
Drilli	ng Contractor H	lartg	eo		Surface RL -		Latitude	-	
Plan	t U	lte-N	lounte	d Rig	Inclination 90°		Longitude	-	
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKFILL DETAILS		STANDPIPE DETAILS
	BH113M_0.10-0.20 PID = 3.2	0.00_		- - -	FILL: Gravelly SAND: fine grained, grey-brown, with sub-angular to angular gravels, No odour				Well Stickup =1.0m
GWNE	BH113M_0.60-0.70	0.50 			Silty CLAY: medium to high plasticity, orange mottled red / pale grey, No odour	D	Cuttings 0.00m - 5.60m		-1.0m - 7.0m PVC casing (50mm Ø)
					og should be read in conjunction with El Austra		Bentonite 5.60m - 6.60m Sand 6.60m - 10.00m		7.0m - 10.0m PVC screen (50mm Ø)

MONITORING WELL LOG BH ID: BH113M

Locat Clien Job N Shee	t ABA Squar Io. E25635.E0	e Pty Li		, 896	& 898 Woodville Road, Villawood NSW		Started Completed Logged By Review By	10 October 2024 10 October 2024 JM Date Date	10 October 2024
	ng Contractor	Hartg	<u>20</u>		Surface RL -		Latitude	-	
Plant			lounte	d Riø			Longitude	-	
riant			lounce						
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKFILL DETAILS		STANDPIPE DETAILS
		7 :		L	Terminated at 10.00m. Target Depth Reached.				
		-		-					
		-		_					
		-		-					
		11		-					
		-		_					
		-		_					
		12-		-					
		-		-					
		-		_					
		-		-					
		13-		_					
		-		_					
		-		-					
		-		_					
		14-		-					
		-		-					
		-		_					
		-		-					
		15		F					
		-		-					
		-		-					
		-		-					
		16-		-					
		-		_					
		-		-					
		-		-					
		17		-					
		-		-					
		-		-					
				_					
		-		_					
		-		_					
		-		_					
		19-		-					
		-		-					
		-		-					
		-		-					
				F					

BH ID: BH114

Clien Job N	t Io.	ABA Square Pty Ltd E25635.E02	90, 8	96 &	898 W	/oodv	ille Road, Villawood NSW	Started Complete Logged B	ed 3 y Si	0 Octo	bber 2024 bber 2024 Date 30 October 2024
Shee		1 of 1					Surface RL -	Review B Latitude	У		Date
Drilling Co Plant								Longitude	-		
		-	RΥ					Longitude		×۲	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
				0.00		-	FILL: Silty SAND: fine grained, brown, with rootlets, trac concrete fragments, with trace gravels and plastic., No	ce odour	6		FILL
		PID = 0.2		- 0.30 ⁻ -		-	Silty CLAY: medium to high plasticity, orange mottled re with trace ironstone gravels, No odour	ed / grey,	D		RESIDUAL SOIL
		PID = 0.2		-		-					
	IE	PID = 0.1		- 1— -							
HA	GWNE	PID = 0.1		-					М	-	
		PID = 0.1		- 2- -		 					
		BH114_2.50-2.60 PID = 0.1		-		_	Terminated at 2.60m. Target depth reached.				
						_					
				-		-					
				-		_					
				- - 4-		-					
				-		_					
				-		-					
				-	-	-					

BH ID: BH115

Loca	tion	15 Hilwa Street and 89	90, 8	96 &	898 W	/oodv	rille Road, Villawood NSW	Started	3	0 Octo	ber 2024
Clien	t	ABA Square Pty Ltd						Complete	d 3	0 Octo	ber 2024
Job I	No.	E25635.E02					I	Logged By	y S	N	Date 30 October 2024
Shee	ts	1 of 1					I	Review B	y		Date
Drilli	ng Co	ontractor -					Surface RL -	Latitude	-		
Plan		-						Longitude	<u> </u>		
			RΥ							۶×	
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
На	GWNE	PID = 0.7 PID = 0.1 PID = 0.0 PID = 0.0		0.00 			FILL: Silty SAND: fine grained, brown, with rootlets, trace concrete fragments, with trace gravels and plastic., No o Silty CLAY: medium to high plasticity, orange mottled red with trace ironstone gravels, No odour		М	-	RESIDUAL SOIL
		BH115_2.40-2.50		-		-					
		PID = 0.0		-		_	Terminated at 2.50m. Target Depth Reached.				

BH ID: BH116

			90, 8	96 &	898 W	/oodv		Started			ber 2024
Clier Job I		ABA Square Pty Ltd E25635.E02						Complete			ber 2024 Date
Shee		1 of 1						Review B		•	Date
Drilling Contractor -								Latitude	-		
Plant -						Inclination 90°	Longitude	e -			
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
НА	GWNE	PID = 2.0 PID = 0.1 PID = 0.1	28	0.00			FILL: Silty SAND: fine grained, brown, with rootlets, trac concrete fragments, with trace gravels and plastic., No of Silty CLAY: medium to high plasticity, orange mottled re with trace ironstone gravels, No odour		D	-	FILL RESIDUAL SOIL
		PID = 0.1 BH116_2.50-2.60 PID = 0.1		2-			Terminated at 2.60m. Target Depth Reached.				

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXCAVATION METHOD

НА	Hand Auger	RD	Rotary blade or drag bit	NQ	Diamond Core - 47 mm
DT	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm
NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm
AS*	Auger Screwing	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm
AD*	Auger Drilling	PT	Push Tube	BH	Tractor Mounted Backhoe
*V	V-Bit	СТ	Cable Tool Rig	EX	Tracked Hydraulic Excavator
*Т	TC-Bit, e.g. AD/T	JET	Jetting	EE	Existing Excavation
ADH	Hollow Auger	WB	Washbore or Bailer	HAND	Excavated by Hand Methods

PENETRATION RESISTANCE

- Low Resistance L
- Μ Medium Resistance

Rapid penetration/ excavation possible with little effort from equipment used.

- Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used.
- н **High Resistance**

Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used.

No further progress possible without risk of damage or unacceptable wear to equipment used.

R **Refusal/Practical Refusal**

These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator.

WATER ¥ Standing Water Level ☐ Partial water loss ▷ Water Seepage Complete Water Loss GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible **GWNO** due to drilling water, surface seepage or cave-in of the borehole/ test pit. GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, **GWNE** groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING SPT Standard Penetration Test to AS1289.6.3.1-2004 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 4,7,11 N=18 Where practical refusal occurs, the blows and penetration for that interval are reported 30/80mm Penetration occurred under the rod weight only RW нw Penetration occurred under the hammer and rod weight only Hammer double bouncing on anvil HΒ Sampling DS **Disturbed Sample** ES Sample for environmental testing Bulk disturbed Sample BDS Gas Sample GS Water Sample ws U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FΡ FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm РМ Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests Dynamic Cone Penetrometer test DCP Static Cone Penetration test СРТ Static Cone Penetration test with pore pressure (u) measurement CPTu **ROCK CORE RECOVERY** TCR=Total Core Recovery (%) SCR=Solid Core Recovery (%) RQD = Rock Quality Designation (%) $\underline{Length \ of \ core \ recovered} \times 100$ $-\frac{\sum Length \, of \, cylindrical \, core \, recovered}{\times 100}$ $-\frac{\sum Axial \ lengths \ of \ core > 100mm}{\times 100} \times 100$ Length of core run Length of core run Length of core run **GEOLOGICAL BOUNDARIES** - -?- -?- -= Boundary ----= Observed Boundary – = Observed Boundary (interpreted or inferred) (position known) (position approximate)

					METHOD			SCRIPTION	
	tralia					DUKE	TULE	AND IEST I	TI LOGS
	FILL		<u>ab ab ab</u> <u>ab ab</u> <u>ab ab</u>		ANIC SOILS OH or Pt)			CLAY (CL, C	I or CH)
	COUBLI BOULDI		<u>446 446</u>		(ML or MH)			SAND (SP o	r SW)
00000	GRAVE	L (GP or GW)	Combina sandy cla		these basic sy	mbols may b	be used to	o indicate mixed ma	terials such as
CLASSIF									
	dly classified		Borehole and T	Fest Pit	Logs using the	e preferred m	ethod giv	en in AS 1726:2017	7, Section 6.1 –
			S		GROUP S				
Fraction	Component	Sub	Size		Major Di		Symbo	I Desc	ription
Fraction	•	Division	mm			of	GW	Well graded g	ravel and gravel-
Oversize	BOULDER		>200		ing an		-		, little or no fines. gravel and gravel-
	COBBLES		63 to 200	-	COARSE GRAINED SOILS More than 65% of soil excluding oversize fraction is greater than 0.075mm	GRAVEL More than 50% coarse fraction >2.36mm	GP	sand mixtures	little or no fines.
		Coarse	19 to 63		il ex reat	GR/ e the rse f >2.3	GM	, , ,	gravel-sand-silt tures.
	GRAVEL	Medium	6.7 to 19	9	nn so ar so	More	GC	Clayey gravel,	gravel-sand-clay
Coarse grained		Fine	2.36 to 6.	.7	GRA 5% c ttion .075	of I			tures. and and gravelly
soil		Coarse	0.6 to 2.3	86	n 65 1 n 65 1 n 65	0% c ion i	SW	sand, little	e or no fines.
	SAND	Medium	0.21 to 0.	.6	COARSE ore than 6 /ersize fra	SAND More than 50% coarse fraction <2.36 mm	SP		sand and gravelly or no fines.
		Fine	0.075 to 0.	.21	Aore	sA tha se f se f 2.3	SM	Silty sand, sa	nd-silt mixtures.
Fine	SILT		0.002 to 0.0	075	20	More coar	SC		d, sandy-clay tures.
grained soil	CLAY		<0.002					Inorganic silts	of low plasticity,
	PLAST	ICITY PROPER	RTIES		FINE GRAINED SOILS More than 35% of soil excluding oversized fraction is less than 0.075mm	Liquid Limit less < 50%	ML		s, rock flour, silty fine sands.
⁶⁰			1119-101		TINE GRAINED SOILS More than 35% of soil cluding oversized fractities less than 0.075mm	imit 0%		Inorganic clays	of low to medium
50 -			D D D D D D D D D D D D D D D D D D D		ED 5% 0.07	id L < 5	CL, CI		elly clays, sandy silty clays.
å 40			ine Aline 201		AIN an 3 vers nan	Liqu	OL		and organic silty
DLASTICITY INDEX 1/2		CH or OH	1, 0,79 (e tha of or ss th	_			ow plasticity.
		CLOLO			FINE More cludin is les	% n >	MH CH		of high plasticity.
20		MF	HOTOH		e×cl ⊐ ∃	Liquid Limit > than 50%	OH	Organic clays	of medium to high
10 -	CL or OL					N 0	011	pla	sticity.
•	10 20 30	40 50 60	70 80 90	100		Highly Organic soil	PT		nd other highly
		LIQUID LIMIT W _L , %				тÇ		organ	NC SOIIS.
	RE CONDIT								
Symbol		Description							
D	,	Non- cohesive and	Ũ		anda ta atial: ti	aathar			
M W		Soils feel cool, dar Soils feel cool, dar				-	water for	ms when handling.	
) for soils with high	er moisture
content a	s follows: Moi	st, dry of plastic lir	nit (<i>w</i> < PL); N					f plastic limit (<i>w</i> < P	
liquia limi		et, wet of liquid lim	It $(W > LL)$,	DE	NSITY				
Cumulant		Undrained Shear	ODT (())" #			Tarra		Damaitu Indau (/	ODT ((N)) #
Symbol	Term	Strength (kPa)	5P1 N #		Symbol	Term		Density Index %	SPT "N" #
VS S	Very Soft Soft	≤ 12 >12 to ≤ 25	≤ 2 >2 to ≤ 4		VL L	Very Loo Loose		≤ 15 >15 to ≤ 35	0 to 4 4 to 10
F	Firm	>25 to ≤ 50	>4 to 8		MD	Medium D		>35 to ≤ 65	10 to 30
St	Stiff	>50 to ≤ 100	>8 to 15		D	Dense)	>65 to ≤ 85	30 to 50
VSt	Very Stiff	>100 to ≤ 200	>15 to 30		VD	Very Der	nse	>85	Above 50
H Fr	Hard Friable	>200	>30						
In the abse	ence of test re							oserved behaviour	
			26:2017, and m	nay be s	subject to corre	ections for ov	erburden	pressure and equip	ment type.
	OMPONEN					1			
Term	Assessme		foolon		nomice litte			roportion by Mass	
Trace		ust detectable by ent to general pro						se grained soils: ≤ e grained soil: ≤ 15	
With	Presence	easily detectable to rent to general pro-	by feel or eye b	out soil	properties little		Coars	e grained soils: 5 - grained soil: 15 - 3	12%
Prefix		easily detectable to perties of primary		nction with the					

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

ROCK MA	ROCK MATERIAL STRENGTH CLASSIFICATION								
Symbol	Symbol Term		Field Guide						
VL	Very Low	(MPa) # 0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.						
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.						
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.						
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.						
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.						
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.						
# Pock St	renath Test Res	ulte —	Point Load Strength Index, Is (50), Axial test (MPa)						

[#]Rock Strength Test Results

Point Load Strength Index, Is₍₅₀₎, Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. However UCS is typically 20 x $Is_{(50)}$.

ROCK	MATEF	RIAL WEATHERING CL	ASSIFICATION					
Sym	bol	Term	Field Guide					
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.					
XM	I	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.					
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or					
	MW	Distinctly Weathered						
SW	I	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.					
FR		Fresh	Rock shows no sign of decomposition or staining.					

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

Layering					Struc	ture					
Term		Descripti	on		Term					Spacing (mm)	
							ated	<6			
Massive	No layerin	Lamin	ated				6 – 20				
Indiationt		Lovoring	uat visible: little offe	at an proportion	Very t	thinly b	pedded			20 - 60	
Indistinct		Layering J	ust visible; little effe	ct on properties	Thinly	/ bedd	ed			60 – 200	
			haddinan fallatian a		Mediu	ım bec	dded			200 - 600	
Distinct			bedding, foliation, c <s easily="" more="" paral<="" td=""><td></td><td></td><td>ly bed</td><td></td><td></td><td></td><td>600 - 2,000</td></s>			ly bed				600 - 2,000	
	DESCR				Very t	thickly	bedded			> 2,000	
ABBREVIATIONS AND	DESCR	Abbr.	Description	Eð							
			-	ure or parting, forme	ed without	t displa	acement. acros	s which the	he rock has little	or no tensile strengt	
Joint		JT	May be closed or	filled by air, water o	or soil or r	ock su	bstance, which	n acts as c	cement.	<u> </u>	
Bedding Parting		BP		e or parting, across					0	•	
Bedding Faiting		D,	layering/ bedding. Bedding refers to the layering or stratification of a rock, indicating orientation during deposition, resulting in planar anisotropy in the rock material.								
Foliotion		FL		structure parallel to			tion or perpend	dicular to t	he direction of h	nigher pressure,	
Foliation			especially in meta	morphic rock, e.g.	Schistosit	y (SH)	and Gneissos	ity.		-	
Contact		со	The surface betwe	en two types or ag	es of rock	κ.					
Cleavage		CL		appear as parallel, closely spaced and planar surfaces resulting from mechanical fracturing of rmation or metamorphism, independent of bedding.							
Sheared Surface		SSU	A near planar, cur	ved or undulating s	surface wł	nich is	usually smoot	h, polishe	d or slickenside	d.	
Sheared Seam/ Zone (Fault)		SS/SZ		n roughly parallel al usually smooth or s	•				ce cut by closel	y spaced (often <50	
Crushed Seam/ Zone (Fault)		CS/CZ		•		•	•			e, with roughly paralle or mixtures of these.	
Extremely Weathered Seam/ Zone		XWS/ XWZ	Z Seam of soil substance, often with gradational boundaries, formed by weathering of the rock material in place								
Infilled Seam		IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel boundaries, formed by soil migrating into joint or open cavity.							formed by soil	
Schistocity		SH	The foliation in schist or other coarse grained crystalline rock due to the parallel arrangement of platy or prismatic mineral grains, such as mica.								
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-space filling or crack-seal grow								
ABBREVIATIONS AND	DESCR		FOR DEFECT SHA	PE AND ROUGHN	IESS						
Shape	Abbr.	Descrip	tion	Roughness	Abbr.	Desc	scription				
Planar	PR	Consist	ent orientation	Polished	POL	Shin	y smooth surfa	ice			
Curved	CU	Gradua orientat	l change in ion	Slickensided	SL	Groo	ved or striated	surface,	usually polished		
Undulating	UN	Wavy s	urface	Smooth	SM	Smo	oth to touch. F	ew or no s	surface irregular	ities	
Stepped	ST	One or steps	more well defined	Rough	RO		y small surface s like fine to co	0	· ·	generally <1mm).	
Irregular IR Ma			harp changes in ion	Very Rough	VR		fany large surface irregularities, amplitude generally >1mm. Feel: ke very coarse sandpaper				
Drientation:			holes – The dip (incl holes – The inclinat					6.			
ABBREVIATIONS AND	DESCRI	PTIONS F	OR DEFECT COAT	TING			DEFECT APE	ERTURE			
Coating	Abbr.	Descript	ion				Aperture	Abbr.	Description		
Clean	CN	No visible	coating or infilling				Closed	-	Closed.		
		N I.a		o oro diocolourod k					1 I		
Stain	SN		coating but surface nite (orange-brown)		by staining	,	Open	OP	Without any inf	ill material.	

Appendix H – Chain of Custody and Sample Receipt Forms

WoodUilk Laboratory:	Envirolab S 12 Ashley S	Services Street, OD NSW 206		25635			0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX				Asbestos Quantification	Excavated Natural Material (ENM) Suite	Suite	xide		Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Sulphate / Chloride	•		Chromium Copper Lead Mercury Nickel Zinc Zinc HM [®] Arsenic Cadmium Chromium Lead
Sample	Laboratory	Container	Samp	ling	1	L RC	n fielc	Ľ.	TRH	TRH	ЛТКН			tos	tos Q	ated N	tering	1 pero	AS	num F		EC (c	C (ele	tte / C			Chromium
ID	ID	Туре	Date	Time	soll	WATER	0.45 µľ	OTHER	HM A	HMA	AM A	втех	VOCs	Asbestos	Asbes	Excave	Dewatering Suite	pH / pH peroxide	sPOCAS	Chron	PFAS	pH/C	PH/E	Sulpha			Mercury D Nickel
QT1-241010	1	1	10/10/20	6	X						X												-				Dewatering Suite
								ļ																ļ			pH & EC TDS / TDU Hardness
								<u> </u>	<u> </u>																	·	Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
					-															ENVI	ROLHI			lab Se <u>12 Ash</u> d NSV	lev Sč	,	TRH (F1, F2, F3, F4) BTEX PAH
	<u>.</u>																				F	· · · ·	eh: (0	e) 991 (62001		Total Phenol
						<u> </u>			+										-		1	363		0 124			
													<u> </u>							Time	Rece Rece	ivod:	160				Standard
									-			-								Rece Tem	eived (b: Cor	ly: ∦ ∦Amt e∕icer	ient.	i			24 Hours
						-					-									Coo	ing: k		Broke	n/Non	e		
												<u> </u>								- șiși			,,,,,,,				Other
Container Type: J = solvent washed, acid t S = solvent washed, acid						lr	ivestiga	ator: I a	attest ti	nat the			ere col ng proc			rdance	e with s	tandar	rd El fie	eld		R	eport v	vith Ęl V	Vaste Cl	assificat	ion Table 🛛 🗌
P = natural HDPE plastic VC = glass vial, Tefton Se	bottle	ule	;			Samp Print	ler's Na						Receiv Print		Envirola	·					Samp	ler's C	omme	nts:		Δ	
ZLB = Zip-Lock Bag			uite 6.01, 55 N	Jillor Stro			ature	30	y M	109	sys	لاد	Signa		LWW							100	se	CC	•	andl	Heininger
			PYRMONT N	ISW 2009		Date		dee	<u>_</u>				Date		KWL												U
eiaust	ralia	a la	Ph: 9516 Ib@eiaustra		au	_	ि ORT		24	l			Date		101	24		_	<u> </u>								
Contamination Remedie	tion Geotechnica	1	COC June 2021 FORM							sults to	: lab(@eiaı	ustral	ia.coi	m.au												

• .

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

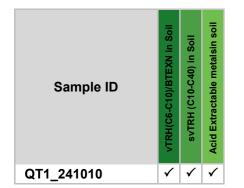
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Jesney Marshal

Sample Login Details	
Your reference	E25635 - 15 Hilwa Street & 890-898 Woodville Rd
Envirolab Reference	363790
Date Sample Received	11/10/2024
Date Instructions Received	11/10/2024
Date Results Expected to be Reported	18/10/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Sheet of]					s	ample	e Matri	ix			_						A	nalysi	is									Comments
site: IS Hilwa Sta Waadville Rad	reet,¢ I, Villa	890-89 wccol	8 Proj	ject No: SG3S												ENM) Suite				(CrS)			ity)					HM ≜ Arsenic Cadmium Chromium Copper Lead
Laboratory:	Envirolab S 12 Ashley S CHATSWOO P: 02 9910 6	treet, DD NSW 2061	7				d filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/втех				Asbestos Quantification	Excavated Natural Material (ENM) Suite	Suite	xide		Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	hloride			HM ^B / PAH	Mercuny , Nickel , Zinc HM º Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sampli Date	ng Time	soll	WATER	0.45 µm field filtered	OTHER	HM ^A /TRH OCP/OP/PC	HM ^A /TRH	нм [≜] /тRн/втех	втех	vocs	Asbestos	Asbestos Q	Excavated h	Dewatering Suite	pH / pH peroxide	sPOCAS	Chromium F	PFAS	pH / CEC (o	pH / EC (ele	Sulphate / Chloride			TCLP HM ^B	Chromium Lead Mercury Nickel
Q1_241017		SIP,VC	12/10/21			X					X																	Dewatering Suite
							•																					pH & EC TDS / TDU Hardness Total Cyanide
					·														·		EIIVIR	ОСАВ		-1	ab Ser 2 Ashi 1 NSW	ev St		Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH
																							3/1	h: (02) 9910	6200		Total Phenol
· · ·			-																		Date	Recei	Ψ.	8/10	2/2	1		TURNAROUND Standard
			· · · · · · · · · · · · · · · · · · ·																		Temp Coolir	: Cool 1g: Ice	/Antoi /Icepa lact/B	ent ack				48 Hours
																		_								•		Other
Container Type: J = solvent washed, acid ri S = solvent washed, acid r						In	vestigat	tor: I a	ttest th	at thes			ere coll Ig proce			rdance	e with s	tandar	d El fiel	ld –		Re	eport wi	ith El W	/aste C	lassifica	ation Ta	able .
P = natural HDPE plastic t VC = glass vial, Tefton Se ZLB = Zip-Lock Bag	oottle						ler's Nam	• •		9a	rshe	al .		ed by (E				SY'	р с				ommer		<u>:</u> .	J	set	Heining
			ite 6.01, 55 M PYRMONT N	SW 2009		Signa Date	ature	10	<u></u>	>				aure	÷	D	bA				Ľ			-				٥
eiaust			Ph: 9516 b@eiaustrali	a.com.a		IMP	<u> </u>				lah@	ı Deiau		1 <u>42</u> a.cor			150	<u> </u>	2:1									

. .

· · · ·

· . .

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

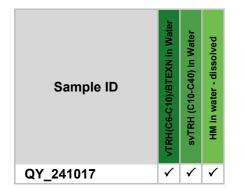
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Jesney Marshal

Sample Login Details	
Your reference	E25635 -15 Hilda St&890-898 Woodville Rd,Villawood
Envirolab Reference	364310
Date Sample Received	18/10/2024
Date Instructions Received	18/10/2024
Date Results Expected to be Reported	25/10/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	20
Cooling Method	None
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Sheet \perp of \perp						S	Sample	e Mat	rix										F	Analys	is										Comments
site: 15 Hilwa S Woodwille	Rd, Vill	90 - go	9 18		ect No:											(Iml)		ENM) Suite	ete	mposite Materials)				(CrS)		-	vity)				HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXANDE	alia Maddox Str RIA NSW 20' 0400 F: 02 8	15	99				0.45 µm field filtered		/TRH/BTEX/PAHs DP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification (500ml)	Asbestos 10L field screening	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	Stockpile con EC / Foreign	Dewatering Suite	oxide		Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Sulphate / Chloride		⁸ / PAH	Mercury Nickel Zinc HM B Arsenic Cadmium
Sample	Laboratory	Container		Samplin	Ig		R.	um fiel	ER		TRF		×	s	stos	stos (stos 1	/ated	Suite /BTEX	Suite - /pH /	atering	pH / pH peroxide	CAS	mium	(0	CEC (EC (el	iate / (/ ^B MH c	Chromium Lead
ID	ID	Туре		Date	Time	SOIL	WATER	0.45 µ	OTHER	HM ^A OCP/(HM ^A	V MH	BTEX	VOCs	Asbestos	Asbe	Asbe	Exca	ENM (TRH	ENM (HM ^A	Dewa	d/Hd	sPOCAS	Chro	PFAS	/Hd	/Hd	Sulph	Lead	TCLP	Mercury Nickel
881	1	ZLB	10/	10/24		×									X																Dewatering Suite
552	Z			1		X									×																TDS / TDU Hardness
553	3					X									x						-										Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
554	4					X									X						Ĩ										TRH (F1, F2, F3, F4) BTEX
585	5					X									X							SGS		-			C				PAH Total Phenol
536	6					X									X						1	SE	27	72:	33	3					LABORATOR
557	7		-			X																									Standard
																															24 Hours
	1000															~															48 Hours
																															72 Hours
																															Other
Container Type: J = solvent washed, aci	d rinsed. Tefton se	ealed glass jar		(4)	1		In	vestiga	ator: I a	ittest that	at these	e samp	oles we		ected in dures.	accord	dance v	with sta	andard	El field	sampl	ing			Repo	ort with	El Wa	ste Cla	ssificati	ion Tabl	le .
S = solvent washed, aci = natural HDPE plasti	id rinsed glass bot						Samp	ler's Na	ime (EI)	1:				· · · · · · · · · · · · · · · · · · ·	ved by (SGS):							Samp	ler's C	ommer	nts:					
VC = glass vial, Tefton ZLB = Zip-Lock Bag		Bulk Bag					Print	Tes	DY	10	الالا	ral		Print		sel	k						_	DL	000	(1	- x	To	10	110	10
				.01, 55 Mil		t, '		atura	les	1				Signa	ature	to be	L							110	Jac		,	-10	el	Re	injuges
				MONT NS Ph: 9516 0			Date	-	Tio	124				Date	m	10/	9 (1	,	5	-: 1	0	1.0									0
eiaus	tralia		lab@e	eiaustralia	a.com.au	u	IMP	ORT	ANT	- (10p	V	29			• 1	ſ	4									
Contamination Rene	idiation Geotechnical		COC	June 2021 FORM	1 v.5 - SGS		Please	e e-mai	il labora	atory rea	sults to	: lab@	Deiau	ustrali	ia.cor	n.au											<u> </u>				

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Jesny Marshal	Manager	Shane McDermott	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25635 15 Hilwa Street & 890-898 Woodvil	Samples Received	Thu 10/10/2024	
Order Number	E25635	Report Due	Thu 17/10/2024	
Samples	7	SGS Reference	SE272333	

- SUBMISSION DETAILS

This is to confirm that 7 samples were received on Thursday 10/10/2024. Results are expected to be ready by COB Thursday 17/10/2024. Please quote SGS reference SE272333 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 7 Soil 10/10/2024 N/A SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 15.4°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

15 Australia 15 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Fibre Identification in soil
001	SS1	3
002	SS2	3
003	SS3	3
004	SS4	3
005	SS5	3
006	SS6	3
007	SS7	3

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25635 15 Hilwa Street & 890-898 Woodvil

Sheet 1 of 3					5	Sampl	e Mat	rix											Analys	sis										Comments
Site: 15 Hilwa Stree Woodville Ra	et q 890 1, Ville	-898 accord	Proje E 250	ct No:											(Im00	D	(ENM) Suite	ete	mposite Materials)				ır (CrS)		(8	ivity)				HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAND	alia Maddox Stre RIA NSW 2019 0400 F: 02 85	5				field filtered		/TRH/BTEX/PAHs OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification (500ml)	Asbestos 10L field screening	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	- Stockpile com EC / Foreign M	Suite	oxide		Reducible Sulfur (CrS)		pH / CEC (cation exchange)	(electrical conductivity)	Chloride		^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container	Sampling	9		R.	μm fiel	<u>د</u>						stos	stos C	tos 1(ated 1	Suite -	Suite -	watering	H per	SAS	nium		CEC (EC (el	ate / C		M	Cadmium Chromium Lead
ID	ID	Туре	Date	Time	SOIL	WATER	0.45 µ	OTHER	HM ^A OCP/	HM ^A	HM ^A	ALC: N	VOCs	Asbestos	Asbe	Asbes	Excav	ENM S	ENM (HM ^A	Dewa	pH / pH peroxide	sPOCAS	Chromium	PFAS	pH/0	pH / E	Sulphate /	Lead	TCLP	Mercury Nickel
BH101_0.1-0.2	1	JZLB	10/10/24		X				X																					Dewatering Suite
BH101_0.4-0.5		I																												TDS / TDU Hardness
BH102_02-0.2-0.2	2	J,ZLB							X																			1		Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
BH102_0.5-06		I																												TRH (F1, F2, F3, F4) BTEX
BH103_0.1-02	3	J,ZLB							x												SGS	EHS	5 Sy	dne	у СС	C				PAH Total Phenol
BH 103_0.4-0.5		I																			SE	27	72	33	4					LABORATORY TURNAROUND
BH104-0.1-0.2		J,ZLB							\times																					Standard
BH104_0.4-0.5	5	I								X																				24 Hours
BH105_0.2-0	6	J.ZLB							X																					48 Hours
BH105_0.8-0.9], 263																												72 Hours
BH 106-0.2-013	7	J,ZLB							X																					Other
BH 106 0.7-0.8	8	J	1		1					X																				
Container Type: J = solvent washed, acid ri						In	vestiga	tor: I at	test the	at thes	e samp	les we		ected in dures.	accord	dance v	with st	andard	I El field	samp	ling			Repo	ort with	El Was	ste Clas	sificati	on Tabl	e .
S = solvent washed, acid r P = natural HDPE plastic b	oottle	ne				Samp	ler's Na	me (EI):					Recei	ved by (SGS):									omme						
VC = glass vial, Tefton Se ZLB = Zip-Lock Bag		Bulk Bag				Print	Jes	sny	M	as	sho	R	Print	de	1 1	K						+P	lea	se	CC .	I	oel	Ha	zin	index
		S	uite 6.01, 55 Mill PYRMONT NSV		t,		ature	de	0	_			Sign	ature	all							1	131 -	0.00		-		F1		inger 1010
			Ph: 9516 0	722		Date		A		4			Date	10	110	2/2	U		5.	15,	m	-	PIR	ase	2 3	210	G	TL	24	010
eiaust	ralla	la	ab@eiaustralia	.com.au	1	IMP	ORT	ANT	:	-(_	/	7		1	1		1		6	OE	EDI	2195	ola	D	-
Contamination 1"Remediat	ion 1 Geotechnical		COC June 2021 FORM	v.5 - SGS		Please	e e-mai	l labora	tory res	sults to	: lab@	Deiau	ustrali	a.con	n.au															

Sheet 1 of 3					5	Sampl	e Mat	rix										,	Analys	is										Comments
Site: 15 Hilwa Stree Woodville R	et & 890 d, Villa)- 898 awood	Proje	ct No: 635									13		0ml)		ENM) Suite	te	composite ign Materials)				(CrS)			ity)				HM ≜ Arsenic Cadmium Chromium Copper
Laboratory:	ALEXAND	alia Maddox Stre RIA NSW 2019 0400 F: 02 85	5				0.45 µm field filtered		/TRH/BTEX/PAHs DP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX)C S	pheno		Asbestos Quantification (500ml)	Asbestos 10L field screening	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	- Stockpile compo EC / Foreign Ma	Suite	xide		Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	EC (electrical conductivity)	Chloride		HM ^B / PAH	Lead Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container	Samplin	9		œ.	m field	Ľ.				VOC	/	tos	tos Q	tos 10	ated N	suite -	Suite - /pH /	/atering	H perc	AS	nium F		EC (o	C (ele	te / C		HMB	Cadmium Chromium
ID	ID	Туре	Date	Time	SOIL	WATER	0.45 µ	OTHER	HM ^A OCP/(HM A	HM A		VOCs	Asbestos	Asbes	Asbest	Excave	TRH/B	ENM S (HM ^A	Dewa	pH / pH peroxide	sPOCAS	Chron	PFAS	pH / C	pH / E	Sulphate /	Lead	TCLP	Lead Mercury Nickel
BH10717 0.30.4	9	J,ZLB	10/10/24		X				X				X														0,			Dewatering Suite
BH107M_0.8-09	(0)	I)					X		X																		TDS / TDU Hardness
BH108_0.2-0.3	11	J,ZLB							x																					Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
BH109M_0.2-0.		J, ZLB							X				Х		1.2															TRH (F1, F2, F3, F4) BTEX
BH10917-10-1.1	13	T		-						X		\times																		PAH Total Phenol
BH110_0.1-0.2	14	J,ZLB							X																					LABORATORY TURNAROUND
BH110_0.4-0.5	15	J								X																		_		Standard
BHII1_0.1-0.2	16	J, ZLB							×																					24 Hours
BHIII_0.6-0.7	17	T								X													-							48 Hours
BH112_0.1-0.2	18	J,ZLB							X																					72 Hours
BH112_0.4-05		J								X																				Other
BH 113M_0.1-0.2	20	J,ZLB			+	_			×				X																	
Container Type: J = solvent washed, acid rir S = solvent washed, acid rir						Inv	vestiga	itor: I a	test tha	at these	e samp	les we	re colle proce		accord	lance v	with sta	andard	El field	sampli	ng			Repo	ort with I	El Was	te Clas	ssificatio	on Tabl	e .
P = natural HDPE plastic bo VC = glass vial, Tefton Sep	ottle tum					Sampl Print		me (EI)		-		0	Receiv Print	ved by (1.						Samp	ler's C	ommer	nts:					
ZLB = Zip-Lock Bag	BB = B	ulk Bag					10	sn	11	1a	dek	al		ke	11	K														
			uite 6.01, 55 Mill PYRMONT NSV	V 2009	1		- And	280	2				Signa	t	h	-,-														
eiaust	ralia	la	Ph: 9516 01 ab@eiaustralia			Date	10		-	4			Date	l)//c	0/2	4	5	.15	pm	-									
Contamination Remediation	in I Geotechnical		COC June 2021 FORM					ANT I labora	tory res	ults to:	lab@	eiau	stralia	a.con	n.au															

Sheet 3 of 3						5	Sample	e Mat	rix										,	Analys	is										Comments
site: 15 Hilwashze Woodville Re	et & so d, vil	10 - 898 bewood			635											0ml)		ENM) Suite	ite	nposite Materials)				(CrS)			/ity)				HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAND	alia Maddox Stre RIA NSW 201 0400 F: 02 8	5	9				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX		1.00		Asbestos Quantification (500ml)	Asbestos 10L field screening	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	Stockpile composit	Suite	oxide		Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Chloride		^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container		Sampling	g		æ	m field	2						tos	tos Q	los 10	ated N	suite -	Suite - /pH /	lering	H perc	AS	nium F		EC (o	C (ele	ite / C		₹.	Cadmium Chromium
ID	ID	Туре	(Date	Time	SOIL	WATER	0.45 µl	OTHER	HM ^A OCP/(A MH	HM ^A	BTEX	vocs	Asbestos	Asbes	Asbest	Excave	TRH/B	ENM S (HM ^A	Dewatering	pH / pH peroxide	sPOCAS	Chron	PFAS	pH / C	pH / E	Sulphate /	Lead	TCLP	Lead Mercury Nickel
BH113M .060	121	I	10/	0/24		×					X			X														0,			Dewatering Suite
QD1. 241010	22	T	1	1		X						X																			TDS / TDU Hardness
QR_241010	23	S,P,VC					X					X																			Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
QTSI	291	ab prepo	Bee			X							×																		TRH (F1, F2, F3, F4) BTEX
QTBI	25 1	ab prepo	per			X							X																		PAH Total Phenol
		1 1																													LABORATORY TURNAROUND
																															Standard
										-																					24 Hours
																															48 Hours
			-					1																							72 Hours
																															Other
0																															L
Container Type: J = solvent washed, acid r S = solvent washed, acid r							Inv	vestiga	ator: I a	ttest tha	at these	e samp	les we	re colle proce		accord	dance v	with sta	andard	El field	sampl	ng			Repo	ort with	El Was	ste Clas	sification	on Tabl	e .
P = natural HDPE plastic t VC = glass vial, Tefton Se	oottle								me (EI)				0		ved by (SGS):							Samp	ler's C	omme	nts:					
ZLB = Zip-Lock Bag		Bulk Bag					Print	Je	300	, r	10-	she	Ro	Print	10	el	K														
00		S)1, 55 Mill IONT NS\		t, -	Signa	ature	de	sle	2			Signa	ature	Ecol	E														
1 Sec	12		Pł	n: 9516 0	722		Date	[(2/1	0/2	4			Date	lo	1/10	2/2	9	5	-15y	m										
elaust	ralla			australia		1			ANT	: '	1						10			-/											
Contamination Remedial	ion i Geotechnica		COC Ju	une 2021 FORM	v.5 - SGS		Please	e e-mai	I labora	atory res	sults to:	lab@)eiau	istrali	a.con	n.au															

ontact	Jesny Marshal	Manager	Shane McDermott
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street &890-898 Woodvill	Samples Received	Thu 10/10/2024
Order Number	E25635	Report Due	Thu 17/10/2024
Samples	25	SGS Reference	SE272334

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 24 Soil, 1 Water 10/10/2024 Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 15.4°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

QTL 241010 forwarded to Envirolab.

4 Soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E25635 15 Hilwa Street &890-898 Woodvill

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Phenolics in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101_0.1-0.2	30	14	26	11	-	10	11	7
002	BH102_0.2-0.3	30	14	26	11	-	10	11	7
003	BH103_0.1-0.2	30	14	26	11	-	10	11	7
004	BH104_0.1-0.2	30	14	26	11	-	10	11	7
005	BH104_0.4-0.5	-	-	26	-	-	10	11	7
006	BH105_0.2-0.3	30	14	26	11	-	10	11	7
007	BH106_0.2-0.3	30	14	26	11	-	10	11	7
008	BH106_0.7-0.8	-	-	26	-	-	10	11	7
009	BH107M_0.3-0.4	30	14	26	11	1	10	79	7
010	BH107M_0.8-0.9	-	-	26	-	-	10	79	7
011	BH108_0.2-0.3	30	14	26	11	-	10	11	7
012	BH109M_0.2-0.3	30	14	26	11	1	10	79	7
013	BH109M_1.0-1.1	-	-	26	-	-	10	79	7
014	BH110_0.1-0.2	30	14	26	11	-	10	11	7
015	BH110_0.4-0.5	-	-	26	-	-	10	11	7
016	BH111_0.1-0.2	30	14	26	11	-	10	11	7
017	BH111_0.6-0.7	-	-	26	-	-	10	11	7
018	BH112_0.1-0.2	30	14	26	11	-	10	11	7
019	BH112_0.4-0.5	-	-	26	-	-	10	11	7
020	BH113M_0.1-0.2	30	14	26	11	1	10	79	7
021	BH113M_0.6-0.7	-	-	26	-	-	10	79	7
022	QD1_241010	-	-	-	-	-	10	11	7
024	QTS1	-	-	-	-	-	-	11	-

CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

SAMPLE RECEIPT ADVICE

Client El AUSTRALIA Project E25635 15 Hilwa Street &890-898 Woodvill SUMMARY OF ANALYSIS Image: Summary of Analysis Image: Summary of Analysis No. Sample ID Image: Summary of Analysis 025 QTB1 11

CONTINUED OVERLEAF

CLIENT DETAILS

Client EI AUSTRALIA

Project E25635 15 Hilwa Street &890-898 Woodvill

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Elements in Soil/Waste
001	BH101_0.1-0.2	3	1	1	7
002	BH102_0.2-0.3	3	1	1	7
003	BH103_0.1-0.2	3	1	1	7
004	BH104_0.1-0.2	3	1	1	7
005	BH104_0.4-0.5	-	1	1	7
006	BH105_0.2-0.3	3	1	1	7
007	BH106_0.2-0.3	3	1	1	7
008	BH106_0.7-0.8	-	1	1	7
009	BH107M_0.3-0.4	3	1	1	7
010	BH107M_0.8-0.9	-	1	1	7
011	BH108_0.2-0.3	3	1	1	7
012	BH109M_0.2-0.3	3	1	1	7
013	BH109M_1.0-1.1	-	1	1	7
014	BH110_0.1-0.2	3	1	1	7
015	BH110_0.4-0.5	-	1	1	7
016	BH111_0.1-0.2	3	1	1	7
017	BH111_0.6-0.7	-	1	1	7
018	BH112_0.1-0.2	3	1	1	7
019	BH112_0.4-0.5	-	1	1	7
020	BH113M_0.1-0.2	3	1	1	7
021	BH113M_0.6-0.7	-	1	1	7
022	QD1_241010	-	1	1	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

SAMPLE RECEIPT ADVICE

Client EI AUSTRALIA Project E25635 15 Hilwa Street &890-898 Woodvill SUMMARY OF ANALYSIS Image: sum of the sum o

CONTINUED OVERLEAF

CLIENT DETAILS

Client EI AUSTRALIA

SUMMARY OF ANALYSIS

Project E25635 15 Hilwa Street &890-898 Woodvill

No	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
No.	Sample ID	25	=		>	> T
023	QR_241010	1	7	9	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Yin, Emily (Alexandria)

From:	AU.Environmental.Sydney, AU (Sydney)
Sent:	Wednesday, 23 October 2024 2:25 PM
То:	AU.SampleReceipt.Sydney, AU (Sydney)
Cc:	AU.Environmental.Sydney, AU (Sydney)
Subject:	FW: [EXTERNAL] RE: Report Job SE272334, your reference E25635 15 Hilwa Street &
	890-898 Woodvill, order number E25635

FYA

Ríta Azzí Industries and Environment Client Services Representative

SGS Australia Pty Ltd

Unit 16, 33 Maddox Street Alexandria, NSW, 2015 Phone: +61 (0)2 8594 0400 Direct: +61 (0)2 8594 3309 E-mail: <u>Rita.azzi@sgs.com</u> General E-mail : <u>au.environmental.sydney@sgs.com</u> Web: <u>www.au.sgs.com</u>

, where we have a second second research the second s

Working Monday to friday : 10 to 6pm

From: Jesny Marshal - ElAustralia < jesny.marshal@eiaustralia.com.au>

Sent: Wednesday, October 23, 2024 1:34 PM

To: AU.Environmental.Sydney, AU (Sydney) <AU.Environmental.Sydney@SGS.com>

Cc: Joel Heininger - ElAustralia < joel.heininger@eiaustralia.com.au>

Subject: [EXTERNAL] RE: Report Job SE272334, your reference E25635 15 Hilwa Street &890-898 Woodvill, order number E25635

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Good afternoon SGS,

Could I please request some additional analysis?

Sample ID	Analysis	Turnaround	
BH106_0.2-0.3			
BH107M_0.3-0.4		24 hr TAT	10 T
BH112_0.1-0.2	pH / CEC	24 fr 141	
BH113M_0.1-0.2			

Should you have any queries, please do not hesitate in contacting us.

Kind Regards,

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Jesny Marshal	Manager	Shane McDermott	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25635 15 Hilwa Street &890-898 Woodvill	Samples Received	Wed 23/10/2024	
Order Number	E25635	Report Due	Thu 24/10/2024	
Samples	25	SGS Reference	SE272334A	

SUBMISSION DETAILS

This is to confirm that 25 samples were received on Wednesday 23/10/2024. Results are expected to be ready by COB Thursday 24/10/2024. Please quote SGS reference SE272334A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 4 Soil 23/10/2024@1:34pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Email Yes 15.4°C Next Day Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:5)
007	BH106_0.2-0.3	13	1	1
009	BH107M_0.3-0.4	13	1	1
018	BH112_0.1-0.2	13	1	1
020	BH113M_0.1-0.2	13	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25635 15 Hilwa Street &890-898 Woodvill

Sheet 1 of 1		S ()				Sa	ample	Matr	ix										1	Analys	sis									÷:	Comments
site: 15 Hilwast Wood ville	Red, U	890-89 illawo	rs e	Project No 2SG3										herods		(ImOC	Ð	(ENM) Suite	ete	composite ign Materials)				Sulfur (CrS)		(5)	ivity)				HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAND	alia Maddox Stre RIA NSW 201 0400 F: 02 85	5					0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX		Tokal PI		Quantification (500ml)	10L field screenin	Excavated Natural Material	ENM Suite - Stockpile discr (TRH/BTEX/PAHs)	Suite - Stockpile comp	Suite	oxide		Chromium Reducible Sulfu		(cation exchange)	(electrical conductivity)	Chloride		^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container	Sa	Impling			ER	μm fiel	ER				×	-	Asbestos	Asbestos C	Asbestos 10	vated h	Suite -	Suite .		pH / pH peroxide	sPOCAS	mium	S	pH / CEC (EC	Sulphate / 0		M	Cadmium Chromium Lead
ID	ID	Туре	Date		me	SOIL	WATER	0.45	OTHER	HM A OCP/(HM A	V WH	BTEX	VOCs	Asbe	Asbe	Asbe	Exca	ENM (TRF	ENM S	Dew	/Hd	sPO	Chro	PFAS	/Hd	/ Hd	Sulpl	Lead	TCLP	Mercury Nickel
BHIOTM	1	S, P, VC		24		_	×				×			×											X						Dewatering Suite pH & EC
BHIO9M	2	S,P,VC	-			_	×				×			×					-		ļ		-		X	-					TDS / TDU Hardness Total Cyanide
QD_241017	3	S.P.Ve		-			×					×								-			-	-		-			-		Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
QR_ 241017	9	S,P,VC				_	\times		_			×							_												BTEX PAH
GW- QTS1	5	Labpay	point			_	×						×					-	_	5	GS	EHS	Syc	Iney	CO	C		_			Total Phenol
GW_ QTBI	6	Lab pro	and]				×						X						-		SE	27	27	14:	3			_			LABORATORY TURNAROUND
																												-			Standard 24 Hours 48 Hours
																-										-		Ľ			72 Hours
						_																						-			Other
								-															_								
Container Type: J = solvent washed, acid r S = solvent washed, acid r							Inve	estiga	tor: I a	ttest that	at these	e samp	les we		ected ir edures.	n accor	dance	with st	andard	El fielo	samp	ling			Rep	ort with	El Was	ste Cla	ssificati	on Tabl	e .
P = natural HDPE plastic I VC = glass vial, Tefton Se	bottle	lie					Sample						0	Recei	ved by	(SGS):								oler's C			× .				
ZLB = Zip-Lock Bag		Bulk Bag				_			SDA	JK	109	sh	al		1	V	<						Camera	Pla	280	2 0	Ľ. :	Jo	21	He	ininger
1:0	Suite 6.01, 55 Miller Stree PYRMONT NSW 2009 Ph: 9516 0722						Signat Date	0	60	0			-	Sign	1	K	11	-		15	<-		-	Plec	150	90	n		27	- 21	ininger 11017
eiaust	ralia	I	ab@eiaus		n.au		IMPC	L8 DRT	/10 ANT	20					10	10	C	((3)		-	10) (En	i so	510	6		
Contamination Remedia	tion Geotechnical		COC June 202	21 FORM v.5 - SG	S					atory re:	sults to	lab@	Deiau	Istrali	ia.co	m.au								-							

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Jesny Marshal	Manager	Shane McDermott	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25635 15 Hilcoa Street & 890-898 Woodvi	Samples Received	Fri 18/10/2024	
Order Number	E25635	Report Due	Fri 25/10/2024	
Samples	6	SGS Reference	SE272743	

- SUBMISSION DETAILS

This is to confirm that 6 samples were received on Friday 18/10/2024. Results are expected to be ready by COB Friday 25/10/2024. Please quote SGS reference SE272743 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 6 Water 18/10/2024 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 4.9°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

QT_241017 Forwarded to Envirolab.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25635 15 Hilcoa Street & 890-898 Woodvi

SUMMARY	Y OF ANALYSIS					1		
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH107M	1	22	1	7	9	77	7
002	BH109M	1	22	1	7	9	77	7
003	QD_241017	1	-	-	7	9	11	7
004	QR_241017	1	-	-	7	9	11	7
005	GW_QTS1	-	-	-	-	-	11	-
006	GW_QTB1	-	-	-	-	-	11	-

_ CONTINUED OVERLEAF

- CLIENT DETAILS -

Client EI AUSTRALIA

.

- SUMMARY OF ANALYSIS -

No.	Sample ID	Per- and Polyfluoroalkyl Substances (PFAS) in
001	BH107M	60
002	BH109M	60

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25635 15 Hilcoa Street & 890-898 Woodvi

Sheet _ of _					5	Sampl	e Mat	rix										/	Analys	is										Comments
Site: 15 Hilwa S Woodwille	, + + 890 - Ld, V	- gas lillawood		Project No: E25635											(Im0(D	(ENM) Suite	ete	mposite Materials)				Sulfur (CrS)		(2)	ivity)				HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAND	alia Maddox Stre RIA NSW 201 0400 F: 02 85	5				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification (500ml)	Asbestos 10L field screening	Excavated Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	g ng	g Suite	oxide		Chromium Reducible Sulfu		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Sulphate / Chloride		TCLP HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic Cadmium
Sample	Laboratory	Container	Sa	ampling		Ľ.	m fiel	R.	OP/P	TRF	-/TRH	~	10	stos	stos (itos 1	ated	Suite	Suite -	Dewatering	H per	CAS	mium	0	CEC	EC (e	ate / (WHO	Chromium Lead
ID	ID	Туре	Date	e Time	SOIL	WATER	0.45 µ	OTHER	HM ^A OCP/C	A MH	1	BTEX	VOCs	Asbestos	Asbe	Asbes	Excav	ENM (TRH/	ENM (HM ^A	Dewa	pH / pH peroxide	sPOCAS	Chro	PFAS	H /	H/ Hd	Sulph	Lead	TCLF	Mercury Nickel
BHUH-25-26	1	5	30/10	Ar	X						X		-							1								X		Dewatering Suite
BH115-2.4-2.5		5	30/.0	D AM	X						×																	X		TDS / TDU Hardness Total Cyanide
BH116_2.5-2.6		2	30/10	Ann	X						X																	X		Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
			/																											TRH (F1, F2, F3, F4) BTEX PAH
													1										-		I.					Total Phenol
																														LABORATORY TURNAROUND
																			EHS	-		-	C							[_landard
	*													-				SE	27	73	39	4								24 Hours
																														48 Hours
																		1												72 Hours
																														Other
Container Type: J = solvent washed, acid r						In	vestiga	ator: I a	ttest th	at thes	ie samp	les we		ected in dures.	accor	dance v	with st	andard	I El fielo	l samp	ling			Rep	ort with	El Was	ste Clas	sificatio	on Tabl	e .
S = solvent washed, acid P = natural HDPE plastic	bottle	lle						ame (EI)						ved by	(SGS):							Samp	oler's C	comme	ents:					
VC = glass vial, Tefton Se ZLB = Zip-Lock Bag		Bulk Bag				Prin		an	N	gla	\land		Print			1	-													
		5		55 Miller Stre NT NSW 2009		Sigr	nature	S					Sign	ature	A	3~	R	eba	ar	2										
			Ph: 9	9516 0722		Date	30	1.0	1/2	4			Date	3	ili	01	24	0	$\frac{2}{1}$	35		1								
eiaust	ralia		ab@eiaus	stralia.com.a	u		ORT	ANT	-								1		~]								
Contamination : Ramedia	tion Geotechnica		COC June 20	021 FORM v.5 - SGS		Pleas	e e-ma	il labor	atory re	sults to	: lab@	Deiau	ustral	ia.com	n.au)(oel	,	Jesi	4	SC	an								

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact Client Address	Joel Heininger EI AUSTRALIA SUITE 6.01 55 MILLER STREET	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone Facsimile Email	PYRMONT NSW 2009 61 2 95160722 (Not specified) joel.heininger@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com	
Project Order Number Samples	E25635 15 Hilwa St & 890-895 Woodville R E25635 3	Samples Received Report Due SGS Reference	Thu 31/10/2024 Tue 5/11/2024 SE273394	

- SUBMISSION DETAILS

This is to confirm that 3 samples were received on Thursday 31/10/2024. Results are expected to be ready by COB Tuesday 5/11/2024. Please quote SGS reference SE273394 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 3 Soil 31/10/2024 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 13.5°C Three Days Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This is the Company its General Conditions of Service at document issued by under accessible Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined www.sgs.com/en/Terms-and-Conditions.aspx. therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E25635 15 Hilwa St & 890-895 Woodville R

_	SUMMARY	OF ANALYSIS					
	No.	Sample ID	Moisture Content	Total Recoverable Elements in Soll/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
	001	BH114_2.5-2.6	1	1	10	11	7
	002	BH115_2.4-2.5	1	1	10	11	7
	003	BH115_2.5-2.6	1	1	10	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Appendix I – Laboratory Analytical Reports

CERTIFICATE OF ANALYSIS 363790

Client Details	
Client	El Australia
Attention	Jesney Marshal
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E25635 - 15 Hilwa Street & 890-898 Woodville Rd
Number of Samples	1 Soil
Date samples received	11/10/2024
Date completed instructions received	11/10/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	18/10/2024	
Date of Issue	16/10/2024	
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Tabitha Roberts, Senior Chemist Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		363790-1		
Your Reference	UNITS	QT1_241010		
Date Sampled		10/10/2024		
Type of sample		Soil		
Date extracted	-	14/10/2024		
Date analysed	-	16/10/2024		
TRH C ₆ - C ₉	mg/kg	<25		
TRH C ₆ - C ₁₀	mg/kg	<25		
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		
Benzene	mg/kg	<0.2		
Toluene	mg/kg	<0.5		
Ethylbenzene	mg/kg	<1		
m+p-xylene	mg/kg	<2		
o-Xylene	mg/kg	<1		
Naphthalene	mg/kg	<1		
Total +ve Xylenes	mg/kg	<1		
Surrogate aaa-Trifluorotoluene	%	117		

svTRH (C10-C40) in Soil				
Our Reference		363790-1		
Your Reference	UNITS	QT1_241010		
Date Sampled		10/10/2024		
Type of sample		Soil		
Date extracted	-	14/10/2024		
Date analysed	-	15/10/2024		
TRH C ₁₀ - C ₁₄	mg/kg	<50		
TRH C ₁₅ - C ₂₈	mg/kg	<100		
TRH C ₂₉ - C ₃₆	mg/kg	<100		
Total +ve TRH (C10-C36)	mg/kg	<50		
TRH >C10 -C16	mg/kg	<50		
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50		
TRH >C ₁₆ -C ₃₄	mg/kg	<100		
TRH >C ₃₄ -C ₄₀	mg/kg	<100		
Total +ve TRH (>C10-C40)	mg/kg	<50		
Surrogate o-Terphenyl	%	85		

Acid Extractable metals in soil				
Our Reference		363790-1		
Your Reference	UNITS	QT1_241010		
Date Sampled		10/10/2024		
Type of sample		Soil		
Date prepared	-	14/10/2024		
Date analysed	-	14/10/2024		
Arsenic	mg/kg	<4		
Cadmium	mg/kg	<0.4		
Chromium	mg/kg	16		
Copper	mg/kg	67		
Lead	mg/kg	3		
Mercury	mg/kg	<0.1		
Nickel	mg/kg	100		
Zinc	mg/kg	42		

Client Reference: E25635 - 15 Hilwa Street & 890-898 Woodville Rd

Moisture		
Our Reference		363790-1
Your Reference	UNITS	QT1_241010
Date Sampled		10/10/2024
Type of sample		Soil
Date prepared	-	14/10/2024
Date analysed	-	15/10/2024
Moisture	%	11

Client Reference: E25635 - 15 Hilwa Street & 890-898 Woodville Rd

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Client Reference: E25635 - 15 Hilwa Street & 890-898 Woodville Rd

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			14/10/2024	[NT]		[NT]	[NT]	14/10/2024	
Date analysed	-			16/10/2024	[NT]		[NT]	[NT]	16/10/2024	
TRH C ₆ − C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	109	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	109	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	104	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	108	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	103	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	116	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	96	[NT]		[NT]	[NT]	108	

QUALITY CONTROL: svTRH (C10-C40) in Soil					Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			14/10/2024	[NT]	[NT]	[NT]	[NT]	14/10/2024	[NT]
Date analysed	-			14/10/2024	[NT]	[NT]	[NT]	[NT]	14/10/2024	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	103	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	97	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	100	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	103	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	97	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	100	[NT]
Surrogate o-Terphenyl	%		Org-020	90	[NT]	[NT]	[NT]	[NT]	88	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			14/10/2024	[NT]		[NT]	[NT]	14/10/2024	
Date analysed	-			14/10/2024	[NT]		[NT]	[NT]	14/10/2024	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	116	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	104	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	108	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS 364310

Client Details	
Client	El Australia
Attention	Jesney Marshal
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E25635 -15 Hilda St&890-898 Woodville Rd,Villawood
Number of Samples	1 Water
Date samples received	18/10/2024
Date completed instructions received	18/10/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	25/10/2024
Date of Issue	23/10/2024
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Dragana Tomas, Senior Chemist Loren Bardwell, Development Chemist Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		364310-1
Your Reference	UNITS	QY_241017
Date Sampled		17/10/2024
Type of sample		Water
Date extracted	-	21/10/2024
Date analysed	-	21/10/2024
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	105
Surrogate Toluene-d8	%	99
Surrogate 4-Bromofluorobenzene	%	93

svTRH (C10-C40) in Water		
Our Reference		364310-1
Your Reference	UNITS	QY_241017
Date Sampled		17/10/2024
Type of sample		Water
Date extracted	-	21/10/2024
Date analysed	-	22/10/2024
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
Total +ve TRH (C10-C36)	µg/L	<50
TRH >C10 - C16	µg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	µg/L	<50
Surrogate o-Terphenyl	%	85

HM in water - dissolved		
Our Reference		364310-1
Your Reference	UNITS	QY_241017
Date Sampled		17/10/2024
Type of sample		Water
Date prepared	-	21/10/2024
Date analysed	-	21/10/2024
Arsenic-Dissolved	µg/L	23
Cadmium-Dissolved	µg/L	0.3
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	1
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	37
Zinc-Dissolved	μg/L	100

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH((C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			21/10/2024	[NT]	[NT]		[NT]	21/10/2024	
Date analysed	-			21/10/2024	[NT]	[NT]		[NT]	21/10/2024	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	108	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	108	
Benzene	μg/L	1	Org-023	<1	[NT]	[NT]		[NT]	113	
Toluene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	115	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]	[NT]		[NT]	103	
m+p-xylene	µg/L	2	Org-023	<2	[NT]	[NT]		[NT]	104	
o-xylene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	104	
Naphthalene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	106	[NT]	[NT]		[NT]	107	
Surrogate Toluene-d8	%		Org-023	100	[NT]	[NT]		[NT]	100	
Surrogate 4-Bromofluorobenzene	%		Org-023	94	[NT]	[NT]		[NT]	94	

QUALITY CONTROL: svTRH (C10-C40) in Water						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			21/10/2024	[NT]	[NT]	[NT]	[NT]	21/10/2024	
Date analysed	-			22/10/2024	[NT]	[NT]	[NT]	[NT]	22/10/2024	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	88	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	94	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	88	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	94	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	98	[NT]	[NT]	[NT]	[NT]	96	[NT]

QUALITY CC	QUALITY CONTROL: HM in water - dissolved					Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date prepared	-			21/10/2024	[NT]		[NT]	[NT]	21/10/2024	
Date analysed	-			21/10/2024	[NT]		[NT]	[NT]	21/10/2024	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	94	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	87	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Jesny Marshal EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street & 890-898 Woodvil	SGS Reference	SE272333 R0
Order Number	E25635	Date Received	10/10/2024
Samples	7	Date Reported	17/10/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES

u 9

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Yusuf KUTHPUDIN Asbestos Analyst

SE272333 R0

Fibre Identification in soil [AS4964/AN602] Tested: 14/10/2024

			SS1	SS2	SS3	SS4	SS5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	10/10/2024 SE272333.001	10/10/2024 SE272333.002	10/10/2024 SE272333.003	10/10/2024 SE272333.004	10/10/2024 SE272333.005
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Date Analysed*	No unit	-	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00

			SS6	SS7
			SOIL	SOIL
PARAMETER	UOM	LOR	- 10/10/2024 SE272333.006	- 10/10/2024 SE272333.007
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01
Date Analysed*	No unit	-	16/10/2024 00:00	16/10/2024 00:00

METHOD	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.
***	Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for
 LNR analysis.
 Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Jesny Marshal	Manager	Shane McDermott
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street & 890-898 Woodvil	SGS Reference	SE272333 R0
Order Number	E25635	Date Received	10 Oct 2024
Samples	7	Date Reported	17 Oct 2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES -

S there .

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identificati	ion in soil				Method AN602				
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Date Analysed	Fibre Identification	Est.%w/w*		
SE272333.001	SS1	Soil	101g Sand, Soil, Rocks, Plant Matter	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		
SE272333.002	SS2	Soil	92g Sand, Soil, Rocks, Plant Matter	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		
SE272333.003	SS3	Soil	130g Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		
SE272333.004	SS4	Soil	44g Sand, Soil, Rocks, Plant Matter	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		
SE272333.005	SS5	Soil	108g Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		
SE272333.006	SS6	Soil	88g Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		
SE272333.007	SS7	Soil	115g Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01		

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY					
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.					
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.					
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."					
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-					
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions. 					

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles *** Indicates that both * and ** apply. .

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

FOOTNOTES -

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Jesny Marshal EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street &890-898 Woodvill	SGS Reference	SE272334 R0
Order Number	E25635	Date Received	10/10/2024
Samples	25	Date Reported	17/10/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES

kmIn

Akheeqar BENIAMEEN Chemist

Organic Section Head

Ly Kim HA

Bennet LO Senior Chemist

Blee

Shane MCDERMOTT Laboratory Manager

Dong LIANG Metals/Inorganics Team Leader

Teresa NGUYEN Organic Chemist

Kamrul AHSAN Senior Chemist

C

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

17/10/2024

SE272334 R0

VOC's in Soil [AN433] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-	-	-	-
Chloromethane	mg/kg	1	-	-	-	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	-	-	-	-
Bromomethane	mg/kg	1	-	-	-	-	-
Chloroethane	mg/kg	1	-	-	-	-	-
Trichlorofluoromethane	mg/kg	1	-	-	-	-	-
Acetone (2-propanone)	mg/kg	10	-	-	-	-	-
lodomethane	mg/kg	5	-	-	-	-	-
1,1-dichloroethene	mg/kg	0.1	-	-	-	-	-
Acrylonitrile	mg/kg	0.1	-	-	-	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-	-	-	-
Allyl chloride	mg/kg	0.1	-	-	-	-	-
Carbon disulfide	mg/kg	0.5	-	-	-	-	-
trans-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-	-	-	-
1,1-dichloroethane	mg/kg	0.1	-	-	-	-	-
Vinyl acetate*	mg/kg	10	-	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	-
Bromochloromethane	mg/kg	0.1	-	-	-	-	-
Chloroform (THM)	mg/kg	0.1	-	-	-	-	-
2,2-dichloropropane	mg/kg	0.1	-	-	-	-	-
1,2-dichloroethane	mg/kg	0.1	-	-	-	-	-
1,1,1-trichloroethane	mg/kg	0.1	-	-	-	-	-
1,1-dichloropropene	mg/kg	0.1	-	-	-	-	-
Carbon tetrachloride	mg/kg	0.1	-	-	-	-	-
Dibromomethane	mg/kg	0.1	-	-	-	-	-
1,2-dichloropropane	mg/kg	0.1	-	-	-	-	-
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	-	-	-	-	-
2-nitropropane	mg/kg	10	-	-	-	-	-
Bromodichloromethane (THM)	mg/kg	0.1	-	-	-	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	-	-	-	-
cis-1,3-dichloropropene	mg/kg	0.1	-	-	-	-	-
trans-1,3-dichloropropene	mg/kg	0.1	-	-	-	-	-
1,1,2-trichloroethane	mg/kg	0.1	-	-	-	-	-
1,3-dichloropropane	mg/kg	0.1	-	-	-	-	-
Dibromochloromethane (THM)	mg/kg	0.1	-	-	-	-	-
2-hexanone (MBK)	mg/kg	5	-	-	-	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	-	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-	-	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	-
Chlorobenzene	mg/kg	0.1	-	-	-	-	-
Bromoform (THM)	mg/kg	0.1	-	-	-	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	-	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	-	-	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	-	-	-	-
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-	-	-	-
Bromobenzene	mg/kg	0.1	-	-	-	-	-

SE272334 R0

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL -	SOIL	SOIL	SOIL	SOIL -
PARAMETER	UOM	LOR	10/10/2024 SE272334.001	10/10/2024 SE272334.002	10/10/2024 SE272334.003	10/10/2024 SE272334.004	10/10/2024 SE272334.005
n-propylbenzene	mg/kg	0.1	-	-	-	-	-
2-chlorotoluene	mg/kg	0.1	-	-	-	-	-
4-chlorotoluene	mg/kg	0.1		-	-	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	-	-	-	-
tert-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	-	-	-	-
sec-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
p-isopropyltoluene	mg/kg	0.1	-	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
n-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-	-	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	-	-	-	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	-	-	-	-
Total VOC*	mg/kg	24	-	-	-	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-	-	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	-

SE272334 R0

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.006	SE272334.007	SE272334.008	SE272334.009	SE272334.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)* Dichlorodifluoromethane (CFC-12)	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloromethane	mg/kg	1	-	-	-	<1	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	-	-	<0.1	<0.1
Bromomethane	mg/kg	1				<1	<1
Chloroethane	mg/kg	1	-	-	-	<1	<1
Trichlorofluoromethane	mg/kg	1		-	-	<1	<1
Acetone (2-propanone)	mg/kg	10	-	-	-	<10	<10
Iodomethane	mg/kg	5	-	-	-	<5	<5
1,1-dichloroethene	mg/kg	0.1	-	-	-	<0.1	<0.1
Acrylonitrile	mg/kg	0.1	-	-	-	<0.1	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-	-	<0.5	<0.5
Allyl chloride	mg/kg	0.1	-	-	-	<0.1	<0.1
Carbon disulfide	mg/kg	0.5	-	-	-	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	-	-	-	<0.1	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-	-	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	-	-	-	<0.1	<0.1
Vinyl acetate*	mg/kg	10	-	-	-	<10	<10
cis-1,2-dichloroethene	mg/kg	0.1	-	-	-	<0.1	<0.1
Bromochloromethane	mg/kg	0.1	-	-	-	<0.1	<0.1
Chloroform (THM)	mg/kg	0.1	-	-	-	<0.1	<0.1
2,2-dichloropropane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	-	-	-	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	-	-	-	<0.1	<0.1
Dibromomethane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2-dichloropropane	mg/kg	0.1	-	-	-	<0.1	<0.1
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	-	-	-	<0.1	<0.1
2-nitropropane	mg/kg	10	-	-	-	<10	<10
Bromodichloromethane (THM)	mg/kg	0.1	-	-	-	<0.1	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	-	-	<1	<1
cis-1,3-dichloropropene	mg/kg	0.1	-	-	-	<0.1	<0.1
trans-1,3-dichloropropene 1,1,2-trichloroethane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,1,2-trichloroethane 1,3-dichloropropane	mg/kg mg/kg	0.1	-	-	-	<0.1	<0.1
Dibromochloromethane (THM)	mg/kg	0.1	-	-	-	<0.1	<0.1
2-hexanone (MBK)	mg/kg	5	-	-	-	<5	<5
1,2-dibromoethane (EDB)	mg/kg	0.1		-	-	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-	-	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-	-	<0.1	<0.1
Chlorobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
Bromoform (THM)	mg/kg	0.1	-	-	-	<0.1	<0.1
Styrene (Vinyl benzene)	mg/kg	0.1	-	-	-	<0.1	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	-	-	-	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	-	-	-	<1	<1
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-	-	<0.1	<0.1
Bromobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1

SE272334 R0

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.006	SE272334.007	SE272334.008	SE272334.009	SE272334.010
n-propylbenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
2-chlorotoluene	mg/kg	0.1	-	-	-	<0.1	<0.1
4-chlorotoluene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
tert-butylbenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
sec-butylbenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,3-dichlorobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,4-dichlorobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
p-isopropyltoluene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2-dichlorobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
n-butylbenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
Hexachlorobutadiene	mg/kg	0.1	-	-	-	<0.1	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	-	-	-	<0.1	<0.1
Total VOC*	mg/kg	24	-	-	-	<24	<24
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-	-	<3.0	<3.0
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	<1.8	<1.8
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	<1.8	<1.8

SE272334 R0

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	<1	<1	-	-
Chloromethane	mg/kg	1	-	<1	<1	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	<0.1	<0.1	-	-
Bromomethane	mg/kg	1	-	<1	<1	-	-
Chloroethane	mg/kg	1	-	<1	<1	-	-
Trichlorofluoromethane	mg/kg	1	-	<1	<1	-	-
Acetone (2-propanone)	mg/kg	10	-	<10	<10	-	-
lodomethane	mg/kg	5	-	<5	<5	-	-
1,1-dichloroethene	mg/kg	0.1	-	<0.1	<0.1	-	-
Acrylonitrile	mg/kg	0.1	-	<0.1	<0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	<0.5	-	-
Allyl chloride	mg/kg	0.1	-	<0.1	<0.1	-	-
Carbon disulfide	mg/kg	0.5	-	<0.5	<0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	<0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	<0.1	-	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	<0.1	-	-
Vinyl acetate*	mg/kg	10	-	<10	<10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	<0.1	-	-
Bromochloromethane	mg/kg	0.1	-	<0.1	<0.1	-	-
Chloroform (THM)	mg/kg	0.1	-	<0.1	<0.1	-	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,1-dichloropropene	mg/kg	0.1	-	<0.1	<0.1	-	-
Carbon tetrachloride	mg/kg	0.1	-	<0.1	<0.1	-	-
Dibromomethane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2-dichloropropane	mg/kg	0.1	-	<0.1	<0.1	-	-
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	-	<0.1	<0.1	-	-
2-nitropropane	mg/kg	10	-	<10	<10	-	-
Bromodichloromethane (THM)	mg/kg	0.1	-	<0.1	<0.1	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	<1	-	-
cis-1,3-dichloropropene	mg/kg	0.1	-	<0.1	<0.1	-	-
trans-1,3-dichloropropene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,3-dichloropropane	mg/kg	0.1	-	<0.1	<0.1	-	-
Dibromochloromethane (THM)	mg/kg	0.1	-	<0.1	<0.1	-	-
2-hexanone (MBK)	mg/kg	5	-	<5	<5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	<0.1	<0.1	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	<0.1	<0.1	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	<0.1	<0.1	-	-
Chlorobenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
Bromoform (THM)	mg/kg	0.1	-	<0.1	<0.1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	<0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	<0.1	<0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	<1	<1	-	-
Isopropylbenzene (Cumene)							
	mg/kg	0.1	-	<0.1	<0.1	-	-

SE272334 R0

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
n-propylbenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	<0.1	-	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
n-butylbenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	<0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	-	-
Total VOC*	mg/kg	24	-	<24	<24	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	<3.0	<3.0	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	<1.8	<1.8	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	<1.8	<1.8	-	-

SE272334 R0

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-	-	-	<1
Chloromethane	mg/kg	1	-	-	-	-	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	-	-	-	<0.1
Bromomethane	mg/kg	1	-	-	-	-	<1
Chloroethane	mg/kg	1	-	-	-	-	<1
Trichlorofluoromethane	mg/kg	1	-	-	-	-	<1
Acetone (2-propanone)	mg/kg	10	-	-	-	-	<10
Iodomethane	mg/kg	5	-	-	-	-	<5
1,1-dichloroethene	mg/kg	0.1	-	-	-	-	<0.1
Acrylonitrile	mg/kg	0.1	-	-	-	-	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-	-	-	<0.5
Allyl chloride	mg/kg	0.1	-	-	-	-	<0.1
Carbon disulfide	mg/kg	0.5	-	-	-	-	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-	-	-	<0.1
1,1-dichloroethane	mg/kg	0.1	-	-	-	-	<0.1
Vinyl acetate*	mg/kg	10	-	-	-	-	<10
cis-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	<0.1
Bromochloromethane	mg/kg	0.1	-	-	-	-	<0.1
Chloroform (THM)	mg/kg	0.1	-	-	-	-	<0.1
2,2-dichloropropane	mg/kg	0.1	-	-	-	-	<0.1
1,2-dichloroethane	mg/kg	0.1	-	-	-	-	<0.1
1,1,1-trichloroethane	mg/kg	0.1	-	-	-	-	<0.1
1,1-dichloropropene	mg/kg	0.1	-	-	-	-	<0.1
Carbon tetrachloride	mg/kg	0.1	-	-	-	-	<0.1
Dibromomethane	mg/kg	0.1	-	-	-	-	<0.1
1,2-dichloropropane	mg/kg	0.1	-	-	-	-	<0.1
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	-	-	-	-	<0.1
2-nitropropane	mg/kg	10	-	-	-	-	<10
Bromodichloromethane (THM)	mg/kg	0.1	-	-	-	-	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	-	-	-	<1
cis-1,3-dichloropropene	mg/kg	0.1	-	-	-	-	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	-	-	-	-	<0.1
1,1,2-trichloroethane	mg/kg	0.1	-	-	-	-	<0.1
1,3-dichloropropane	mg/kg	0.1	-	-	-	-	<0.1
Dibromochloromethane (THM)	mg/kg	0.1	-	-	-	-	<0.1
2-hexanone (MBK)	mg/kg	5	-	-	-	-	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	-	-	-	-	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-	-	-	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	<0.1
Chlorobenzene	mg/kg	0.1	-	-	-	-	<0.1
Bromoform (THM)	mg/kg	0.1	-	-	-	-	<0.1
Styrene (Vinyl benzene)	mg/kg	0.1	-	-	-	-	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	<0.1
1,2,3-trichloropropane	mg/kg	0.1	-	-	-	-	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	-	-	-	-	<1
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-	-	-	<0.1
Bromobenzene	mg/kg	0.1	-	-	-	-	<0.1

SE272334 R0

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
n-propylbenzene	mg/kg	0.1	-	-	-	-	<0.1
2-chlorotoluene	mg/kg	0.1	-	-	-	-	<0.1
4-chlorotoluene	mg/kg	0.1	-	-	-	-	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	-	-	-	-	<0.1
tert-butylbenzene	mg/kg	0.1	-	-	-	-	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	-	-	-	-	<0.1
sec-butylbenzene	mg/kg	0.1	-	-	-	-	<0.1
1,3-dichlorobenzene	mg/kg	0.1	-	-	-	-	<0.1
1,4-dichlorobenzene	mg/kg	0.1	-	-	-	-	<0.1
p-isopropyltoluene	mg/kg	0.1	-	-	-	-	<0.1
1,2-dichlorobenzene	mg/kg	0.1	-	-	-	-	<0.1
n-butylbenzene	mg/kg	0.1	-	-	-	-	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-	-	-	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	-	-	-	-	<0.1
Hexachlorobutadiene	mg/kg	0.1	-	-	-	-	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	-	-	-	-	<0.1
Total VOC*	mg/kg	24	-	-	-	-	<24
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-	-	-	<3.0
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	<1.8
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	<1.8

			BH113M_0.6-0.7	001 244040	QTS1	QTB1
			BH113M_0.0-0.7	QD1_241010	QISI	QIBI
			SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.021	SE272334.022	SE272334.024	SE272334.025
Benzene	mg/kg	0.1	<0.1	<0.1	[94%]	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	[98%]	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	[99%]	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	[98%]	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	[98%]	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	-	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	-	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	[96%]	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	-	-	-
Chloromethane	mg/kg	1	<1	-	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	-	-	-
Bromomethane	mg/kg	1	<1	-	-	-
Chloroethane	mg/kg	1	<1	-	-	-
Trichlorofluoromethane	mg/kg	1	<1	-	-	-
Acetone (2-propanone)	mg/kg	10	<10	-	-	-
lodomethane	mg/kg	5	<5	-	-	-
1,1-dichloroethene	mg/kg	0.1	<0.1	-	-	-
Acrylonitrile	mg/kg	0.1	<0.1	-	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	-	-	-
Allyl chloride	mg/kg	0.1	<0.1	-	-	-
Carbon disulfide	mg/kg	0.5	<0.5	-	-	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	-	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	-	-	-
1,1-dichloroethane	mg/kg	0.1	<0.1	-	-	-
Vinyl acetate*	mg/kg	10	<10	-	-	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	-	-	-
Bromochloromethane	mg/kg	0.1	<0.1	-	-	-
Chloroform (THM)	mg/kg mg/kg	0.1	<0.1		-	
2,2-dichloropropane 1,2-dichloroethane	mg/kg	0.1	<0.1		-	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1		-	
1,1-dichloropropene	mg/kg	0.1	<0.1			-
Carbon tetrachloride	mg/kg	0.1	<0.1			_
Dibromomethane	mg/kg	0.1	<0.1	_		-
1.2-dichloropropane	mg/kg	0.1	<0.1	_	-	-
Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	-	-	-
2-nitropropane	mg/kg	10	<10	-	-	-
Bromodichloromethane (THM)	mg/kg	0.1	<0.1	_	_	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	-	-	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	-	-	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	-	-	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	-	-	-
1,3-dichloropropane	mg/kg	0.1	<0.1	-	-	-
Dibromochloromethane (THM)	mg/kg	0.1	<0.1	-	-	-
2-hexanone (MBK)	mg/kg	5	<5	-	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	-	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	-	-	-
Chlorobenzene	mg/kg	0.1	<0.1	-	-	-
Bromoform (THM)	mg/kg	0.1	<0.1	-	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	-	-	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	-	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	-	-	-
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	-	-	-
Bromobenzene	mg/kg	0.1	<0.1	-	-	-

			BH113M_0.6-0.7	QD1_241010	QTS1	QTB1
			SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.021	SE272334.022	SE272334.024	SE272334.025
n-propylbenzene	mg/kg	0.1	<0.1	-	-	-
2-chlorotoluene	mg/kg	0.1	<0.1	-	-	-
4-chlorotoluene	mg/kg	0.1	<0.1	-	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	-	-	-
tert-butylbenzene	mg/kg	0.1	<0.1	-	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	-	-	-
sec-butylbenzene	mg/kg	0.1	<0.1	-	-	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	-	-	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	-	-	-
p-isopropyltoluene	mg/kg	0.1	<0.1	-	-	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	-	-	-
n-butylbenzene	mg/kg	0.1	<0.1	-	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	-	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	-	-	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	-	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	-	-	-
Total VOC*	mg/kg	24	<24	-	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	-	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	-	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	-	-	-

SE272334 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
		1.00	10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.006	SE272334.007	SE272334.008	SE272334.009	SE272334.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH113M_0.6-0.7	QD1_241010
			SOIL	SOIL
		1.05	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.021	SE272334.022
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	10/10/2024 SE272334.001	10/10/2024 SE272334.002	10/10/2024 SE272334.003	10/10/2024 SE272334.004	10/10/2024 SE272334.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	49	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
PARAMETER	UOM	LOR	SOIL - 10/10/2024 SE272334.006	SOIL - 10/10/2024 SE272334.007	SOIL - 10/10/2024 SE272334.008	SOIL - 10/10/2024 SE272334.009	SOIL - 10/10/2024 SE272334.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	54	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	160	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	140	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	130	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	220	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	210	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	350	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/10/2024 (continued)

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	53	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	210	<45	<45	<45	79
TRH C37-C40	mg/kg	100	160	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	170	<90	<90	<90	91
TRH >C34-C40 (F4)	mg/kg	120	250	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	260	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	420	<210	<210	<210	<210

			BH113M_0.6-0.7	QD1_241010
			SOIL - 10/10/2024	SOIL - 10/10/2024
PARAMETER	UOM	LOR	SE272334.021	SE272334.022
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	87
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.006	SE272334.007	SE272334.008	SE272334.009	SE272334.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/10/2024 (continued)

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			00"	0.01	00"	0.01	201
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 10/10/2024 SE272334.016	SOIL - 10/10/2024 SE272334.017	SOIL - 10/10/2024 SE272334.018	SOIL - 10/10/2024 SE272334.019	SOIL - 10/10/2024 SE272334.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/10/2024 (continued)

BH113M_0.6-0.7 10/10/2024 SE272334.021 PARAMETER UOM LOR Naphthalene 0.1 <0.1 ma/ka 2-methylnaphthalene 0.1 <0.1 mg/kg <0.1 1-methylnaphthalene mg/kg 0.1 Acenaphthylene 0.1 <0.1 mg/kg Acenaphthene mg/kg 0.1 <0.1 Fluorene mg/kg 0.1 <0.1 Phenanthrene mg/kg 0.1 <0.1 Anthracene mg/kg 0.1 <0.1 Fluoranthene mg/kg 0.1 <0.1 Pyrene mg/kg 0.1 <0.1 Benzo(a)anthracene mg/kg 0.1 < 0.1 Chrysene mg/kg 0.1 < 0.1 Benzo(b&j)fluoranthene mg/kg 0.1 <0.1 Benzo(k)fluoranthene 0.1 <0.1 mg/kg Benzo(a)pyrene 0.1 <0.1 mg/kg <0.1 Indeno(1,2,3-cd)pyrene 0.1 mg/kg Dibenzo(ah)anthracene 0.1 <0.1 mg/kg Benzo(ghi)perylene 0.1 <0.1 mg/kg Carcinogenic PAHs, BaP TEQ <LOR=0* 0.2 <0.2 TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <LOR=LOR* <0.3 TEQ (mg/kg) 0.3 Carcinogenic PAHs, BaP TEQ <LOR=LOR/2* TEQ (mg/kg) 0.2 <0.2 Total PAH (18) 0.8 <0.8 mg/kg Total PAH (NEPM/WHO 16) mg/kg 0.8 <0.8

SE272334 R0

OC Pesticides in Soil [AN420] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH105_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	10/10/2024 SE272334.001	10/10/2024 SE272334.002	10/10/2024 SE272334.003	10/10/2024 SE272334.004	10/10/2024 SE272334.006
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide o.p'-DDE*	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
-		0.1					<0.1
Alpha Endosulfan Gamma Chlordane	mg/kg		<0.2	<0.2	<0.2	<0.2	<0.2
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 14/10/2024 (continued)

			BH106_0.2-0.3	BH107M_0.3-0.4	BH108_0.2-0.3	BH109M_0.2-0.3	BH110_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.007	SE272334.009	SE272334.011	SE272334.012	SE272334.014
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 14/10/2024 (continued)

			BH111_0.1-0.2	BH112_0.1-0.2	BH113M_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 10/10/2024 SE272334.016	SOIL - 10/10/2024 SE272334.018	SOIL - 10/10/2024 SE272334.020
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH105_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 10/10/2024 SE272334.001	SOIL - 10/10/2024 SE272334.002	SOIL - 10/10/2024 SE272334.003	SOIL - 10/10/2024 SE272334.004	SOIL - 10/10/2024 SE272334.006
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH106_0.2-0.3	BH107M_0.3-0.4	BH108_0.2-0.3	BH109M_0.2-0.3	BH110_0.1-0.2
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	10/10/2024 SE272334.007	10/10/2024 SE272334.009	10/10/2024 SE272334.011	10/10/2024 SE272334.012	10/10/2024 SE272334.014
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH111_0.1-0.2	BH112_0.1-0.2	BH113M_0.1-0.2
			SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.018	SE272334.020
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH105_0.2-0.3
			SOIL - 10/10/2024	SOIL - 10/10/2024	SOIL - 10/10/2024	SOIL - 10/10/2024	SOIL - 10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.006
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH106_0.2-0.3	BH107M_0.3-0.4	BH108_0.2-0.3	BH109M_0.2-0.3	BH110_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 10/10/2024 SE272334.007	SOIL - 10/10/2024 SE272334.009	SOIL - 10/10/2024 SE272334.011	SOIL - 10/10/2024 SE272334.012	SOIL - 10/10/2024 SE272334.014
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH111_0.1-0.2	BH112_0.1-0.2	BH113M_0.1-0.2
			SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.018	SE272334.020
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

Total Phenolics in Soil [AN295] Tested: 15/10/2024

			BH107M_0.3-0.4	BH109M_0.2-0.3	BH113M_0.1-0.2
			SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.009	SE272334.012	SE272334.020
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5

SE272334 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.005
Arsenic, As	mg/kg	1	6	2	3	2	4
Cadmium, Cd	mg/kg	0.3	<0.3	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	15	6.9	11	4.7	16
Copper, Cu	mg/kg	0.5	17	9.0	21	14	2.7
Lead, Pb	mg/kg	1	55	13	41	30	17
Nickel, Ni	mg/kg	0.5	4.1	4.1	3.2	7.5	1.7
Zinc, Zn	mg/kg	2	59	33	37	40	8.6

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	10/10/2024 SE272334.006	10/10/2024 SE272334.007	10/10/2024 SE272334.008	10/10/2024 SE272334.009	10/10/2024 SE272334.010
Arsenic, As	mg/kg	1	<1	1	5	2	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	1.7	10	23	8.2	16
Copper, Cu	mg/kg	0.5	2.8	58	12	53	13
Lead, Pb	mg/kg	1	2	1	13	2	13
Nickel, Ni	mg/kg	0.5	1.1	100	6.6	100	2.2
Zinc, Zn	mg/kg	2	3.6	38	13	49	16

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
Arsenic, As	mg/kg	1	2	2	7	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	8.3	13	19	17	7.6
Copper, Cu	mg/kg	0.5	53	58	15	39	9.7
Lead, Pb	mg/kg	1	3	7	14	20	9
Nickel, Ni	mg/kg	0.5	78	92	3.4	54	2.0
Zinc, Zn	mg/kg	2	40	40	13	44	6.2

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
Arsenic, As	mg/kg	1	3	20	2	4	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	18	12	38	5.1	73
Copper, Cu	mg/kg	0.5	55	16	47	11	35
Lead, Pb	mg/kg	1	4	13	4	8	5
Nickel, Ni	mg/kg	0.5	58	6.7	80	0.5	81
Zinc, Zn	mg/kg	2	37	13	51	6.1	60

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 14/10/2024 (continued)

			BH113M_0.6-0.7	QD1_241010	
			SOIL	SOIL	
			- 10/10/2024	- 10/10/2024	
PARAMETER	UOM	LOR	SE272334.021	SE272334.022	
Arsenic, As	mg/kg	1	12	1	
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	
Chromium, Cr	mg/kg	0.5	11	8.6	
Copper, Cu	mg/kg	0.5	13	42	
Lead, Pb	mg/kg	1	8	4	
Nickel, Ni	mg/kg	0.5	1.6	82	
Zinc, Zn	mg/kg	2	12	45	

Mercury in Soil [AN312] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.006	SE272334.007	SE272334.008	SE272334.009	SE272334.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH113M_0.6-0.7	QD1_241010
			SOIL	SOIL
			- 10/10/2024	- 10/10/2024
PARAMETER	UOM	LOR	SE272334.021	SE272334.022
Mercury	mg/kg	0.05	<0.05	<0.05

Moisture Content [AN002] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH104_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.005
% Moisture	%w/w	1	15.1	14.0	13.7	9.4	8.2

			BH105_0.2-0.3	BH106_0.2-0.3	BH106_0.7-0.8	BH107M_0.3-0.4	BH107M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.006	SE272334.007	SE272334.008	SE272334.009	SE272334.010
% Moisture	%w/w	1	18.6	10.3	16.5	5.3	23.1

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_1.0-1.1	BH110_0.1-0.2	BH110_0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.011	SE272334.012	SE272334.013	SE272334.014	SE272334.015
% Moisture	%w/w	1	9.4	6.9	20.1	7.4	16.5

			BH111_0.1-0.2	BH111_0.6-0.7	BH112_0.1-0.2	BH112_0.4-0.5	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.017	SE272334.018	SE272334.019	SE272334.020
% Moisture	%w/w	1	5.5	19.2	5.6	19.0	9.4

			BH113M_0.6-0.7	QD1_241010	QTB1
			SOIL	SOIL	SOIL
			10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.021	SE272334.022	SE272334.025
% Moisture	%w/w	1	19.6	10.0	<1.0

Fibre Identification in soil [AS4964/AN602] Tested: 14/10/2024

			BH101_0.1-0.2	BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.1-0.2	BH105_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.001	SE272334.002	SE272334.003	SE272334.004	SE272334.006
Date Analysed*	No unit	-	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH106_0.2-0.3	BH107M_0.3-0.4	BH108_0.2-0.3	BH109M_0.2-0.3	BH110_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.007	SE272334.009	SE272334.011	SE272334.012	SE272334.014
Date Analysed*	No unit	-	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH111_0.1-0.2	BH112_0.1-0.2	BH113M_0.1-0.2
			SOIL	SOIL	SOIL
					-
			10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334.016	SE272334.018	SE272334.020
Date Analysed*	No unit	-	16/10/2024 00:00	16/10/2024 00:00	16/10/2024 00:00
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 15/10/2024

			QR_241010
			WATER
			- 10/10/2024
PARAMETER	UOM	LOR	SE272334.023
Benzene	μg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene (VOC)*	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 15/10/2024

			QR_241010
			WATER
			- 10/10/2024
PARAMETER	UOM	LOR	SE272334.023
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 14/10/2024

			QR_241010
			WATER
			- 10/10/2024
PARAMETER	UOM	LOR	SE272334.023
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 15/10/2024

			QR_241010
			WATER - 10/10/2024
PARAMETER	UOM	LOR	SE272334.023
Arsenic	µg/L	1	<1
Cadmium	µg/L	0.1	<0.1
Chromium	µg/L	1	<1
Copper	µg/L	1	<1
Lead	µg/L	1	<1
Nickel	µg/L	1	<1
Zinc	µg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 14/10/2024

			QR_241010
			WATER
			-
			10/10/2024
PARAMETER	UOM	LOR	SE272334.023
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
METTOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN295	For Soil, a 1:10 NaOH extraction is made and analysed after 16 hours. The soil extract or water sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.
***	Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for
 LNR analysis.
 Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Jesny Marshal	Manager	Shane McDermott
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street &890-898 Woodvill	SGS Reference	SE272334 R0
Order Number	E25635	Date Received	10 Oct 2024
Samples	13	Date Reported	17 Oct 2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique. Asbestos analysed by Approved Identifier Yusuf Kuthpudin

SIGNATORIES -

S Aur

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

ANALYTICAL REPORT

RESULTS -

Fibre Identification in soil

Method AN602

Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Date Analysed	Fibre Identification	Est.%w/w*
SE272334.001	BH101_0.1-0.2	Soil	139g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE272334.002	BH102_0.2-0.3	Soil	171g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Synthetic Mineral Fibres Detected Organic Fibres Detected	<0.01
SE272334.003	BH103_0.1-0.2	Soil	111g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE272334.004	BH104_0.1-0.2	Soil	166g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.006	BH105_0.2-0.3	Soil	142g Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.007	BH106_0.2-0.3	Soil	148g Clay, Sand, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.009	BH107M_0.3-0.4	Soil	149g Sand, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.011	BH108_0.2-0.3	Soil	189g Sand, Rocks, Bitumen	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.012	BH109M_0.2-0.3	Soil	116g Clay, Sand, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.014	BH110_0.1-0.2	Soil	138g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.016	BH111_0.1-0.2	Soil	131g Clay, Sand, Soil, Rocks, Bitumen	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.018	BH112_0.1-0.2	Soil	77g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01
SE272334.020	BH113M_0.1-0.2	Soil	153g Clay, Sand, Soil, Rocks	10 Oct 2024	16 Oct 2024	No Asbestos Found at RL of 0.1g/kg	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles *** Indicates that both * and ** apply. .

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

FOOTNOTES -

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Jesny Marshal	Manager	Shane McDermott
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street &890-898 Woodvill	SGS Reference	SE272334A R0
Order Number	E25635	Date Received	23/10/2024
Samples	25	Date Reported	24/10/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Ros

Bennet LO Senior Chemist

10_

Shane MCDERMOTT Laboratory Manager

узыкузык гиенц

Ying Ying ZHANG Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Moisture Content [AN002] Tested: 23/10/2024

			BH106_0.2-0.3	BH107M_0.3-0.4	BH112_0.1-0.2	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
						-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334A.007	SE272334A.009	SE272334A.018	SE272334A.020
% Moisture	%w/w	1	9.8	10.5	6.4	9.5

pH in soil (1:5) [AN101] Tested: 24/10/2024

			BH106_0.2-0.3	BH107M_0.3-0.4	BH112_0.1-0.2	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
						-
			10/10/2024	10/10/2024	10/10/2024	10/10/2024
PARAMETER	UOM	LOR	SE272334A.007	SE272334A.009	SE272334A.018	SE272334A.020
pH	pH Units	0.1	8.8	9.2	8.8	9.3

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 24/10/2024

			BH106_0.2-0.3	BH107M_0.3-0.4	BH112_0.1-0.2	BH113M_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	10/10/2024 SE272334A.007	10/10/2024 SE272334A.009	10/10/2024 SE272334A.018	10/10/2024 SE272334A.020
Exchangeable Calcium, Ca	mg/kg	2	4300	7000	4100	4900
Exchangeable Calcium, Ca	meq/100g	0.01	22	35	20	25
Exchangeable Calcium Percentage*	%	0.1	66.8	87.3	66.8	71.2
Exchangeable Potassium, K	mg/kg	2	140	530	140	150
Exchangeable Potassium, K	meq/100g	0.01	0.37	1.4	0.35	0.38
Exchangeable Potassium Percentage*	%	0.1	1.1	3.4	1.1	1.1
Exchangeable Magnesium, Mg	mg/kg	2	1100	84	1000	740
Exchangeable Magnesium, Mg	meq/100g	0.02	9.2	0.68	8.5	6.0
Exchangeable Magnesium Percentage*	%	0.1	28.2	1.7	27.7	17.5
Exchangeable Sodium, Na	mg/kg	2	290	690	300	810
Exchangeable Sodium, Na	meq/100g	0.01	1.3	3.0	1.3	3.5
Exchangeable Sodium Percentage*	%	0.1	3.9	7.6	4.3	10.3
Cation Exchange Capacity	meq/100g	0.02	33	40	31	35

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

esny Marshal I AUSTRALIA	Manager	Shane McDermott
	Laboratory	
	Laboratory	SGS Alexandria Environmental
UITE 6.01 5 MILLER STREET YRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
1 2 95160722	Telephone	+61 2 8594 0400
Not specified)	Facsimile	+61 2 8594 0499
sny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
25635 15 Hilcoa Street & 890-898 Woodvi	SGS Reference	SE272743 R0
25635	Date Received	18/10/2024
	Date Reported	25/10/2024
Vc esr 25	t specified) ny.marshal@eiaustralia.com.au 5635 15 Hilcoa Street & 890-898 Woodvi	it specified) Facsimile ny.marshal@eiaustralia.com.au Email 5635 15 Hilcoa Street & 890-898 Woodvi SGS Reference 5635 Date Received

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Teresa NGUYEN Organic Chemist

Ser

уэль узла гива

Bennet LO Senior Chemist

Ying Ying ZHANG

Laboratory Technician

Dong LIANG Metals/Inorganics Team Leader

Acm/m/

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St

Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 f +61 2 8594 0499 Australia Australia

www.sgs.com.au

PO Box 6432 Bourke Rd BC

Member of the SGS Group

SE272743 R0

VOCs in Water [AN433] Tested: 23/10/2024

NAMENATENA				BH107M	BH109M	QD_241017	QR_241017	GW_QTS1
NAME 10NAME 10<				WATER	WATER	WATER	WATER	WATER
non-termorddel					-	-	-	-
herenoise		ПОМ	LOR					
Takanjac <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
indexndndndndndndndndndndndsystemnd04								
oyeropebbb <td>Ethylbenzene</td> <td></td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td></td>	Ethylbenzene		0.5	<0.5	<0.5	<0.5	<0.5	
onlyiniti			1	<1	<1	<1	<1	
TailBTSpqq<	o-xylene		0.5	<0.5	<0.5	<0.5	<0.5	[98%]
haphacontorpp0.4 <td>Total Xylenes</td> <td>µg/L</td> <td>1.5</td> <td><1.5</td> <td><1.5</td> <td><1.5</td> <td><1.5</td> <td>-</td>	Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	-
InductorInd	Total BTEX	µg/L	3	<3	<3	<3	<3	-
Descentancypp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<p	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	[96%]
vp of constraintp d0.10.4.0.00.4.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.00.1.0.0.0.00.1.0.0.0.0.00.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	-	-	-
non-serviceipit <td>Chloromethane</td> <td>µg/L</td> <td>5</td> <td><5</td> <td><5</td> <td>-</td> <td>-</td> <td>-</td>	Chloromethane	µg/L	5	<5	<5	-	-	-
Ownerwayint<intint	Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	-	-	-
InchangemannindindindindindindindindindActors (progenery)ppl0.540.5 <td>Bromomethane</td> <td>µg/L</td> <td>10</td> <td><10</td> <td><10</td> <td>-</td> <td>-</td> <td>-</td>	Bromomethane	µg/L	10	<10	<10	-	-	-
Acteor é propanennelnelnelnelnelneliobantanonpl<	Chloroethane	µg/L	5	<5	<5	-	-	-
biometryby	Trichlorofluoromethane	µg/L	1	<1	<1	-	-	-
1.1.drinombanejnlindindindindindindAnylenkiejnl0.54.54.654.61.01.01.0Anylenkiejnl0.24.424.421.0.01.0.01.0.01.0.0Anylenkiejnl0.34.424.421.0.01.0.01.0.01.0.0Kein Automationjnl0.54.414.421.0.01.0.01.0.01.0.0Kein Machanejnl0.54.414.101.0.01.0.01.0.01.0.01.0.0Kein Machanejnl0.54.414.101.0.01.	Acetone (2-propanone)	µg/L	10	<10	<10	-	-	-
AnywaizeµpL0.80.40.50.40.50.10.10.1Dehromates (Maybes chick)µpL0.20.420.40.10.10.1Aly chickµpL0.20.420.420.10.10.10.1Caben chickiµpL0.20.410.10.10.10.10.10.1Sins 2 additionationµpL0.50.410.1<	lodomethane	µg/L	5	<5	<5	-	-	-
Deba mpl fs d d d d d Alp discose mpl 2 42 42 Alp discose mpl 0.2 42 42 Caton dustification mpl 0.5 4-05	1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
All chorids ypl 2 42 42 42 42 42 43	Acrylonitrile	µg/L	0.5	<0.5	<0.5	-	-	-
Carbon underµpl242424214.11Render under underµpl0540.5 <t< td=""><td>Dichloromethane (Methylene chloride)</td><td>µg/L</td><td>5</td><td><5</td><td><5</td><td>-</td><td>-</td><td>-</td></t<>	Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	-	-	-
nen-1.2.dchlorophane ipil 0.4 0.40.5 <t< td=""><td>Allyl chloride</td><td>µg/L</td><td>2</td><td><2</td><td><2</td><td>-</td><td>-</td><td>-</td></t<>	Allyl chloride	µg/L	2	<2	<2	-	-	-
MBE (MehyLent-Luny ehen)upl0.1 </td <td>Carbon disulfide</td> <td>µg/L</td> <td>2</td> <td><2</td> <td><2</td> <td>-</td> <td>-</td> <td>-</td>	Carbon disulfide	µg/L	2	<2	<2	-	-	-
1.1 debtorethane pdf 0.4 0.40.5 0.40.5 0.4.0.5 0.4.0.5 KK (2-barrow pdf 0.4 0.4.0.5<	trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
Ny acatam pd 10 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <t< td=""><td>MtBE (Methyl-tert-butyl ether)</td><td>µg/L</td><td>0.5</td><td><1↑</td><td><1↑</td><td>-</td><td>-</td><td>-</td></t<>	MtBE (Methyl-tert-butyl ether)	µg/L	0.5	<1↑	<1↑	-	-	-
MER (2 butanone) µpL 10 <10 <10 <10 <10 <10 ch1-2 chlorosthene µpL 0.6 <0.5	1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
del.2.didhtorethane ppl. 0.5 4.05 <td>Vinyl acetate*</td> <td>µg/L</td> <td>10</td> <td><10</td> <td><10</td> <td>-</td> <td>-</td> <td>-</td>	Vinyl acetate*	µg/L	10	<10	<10	-	-	-
Bronchiromethane ppL 0.5 4.0.5	MEK (2-butanone)	µg/L	10	<10	<10	-	-	-
Chordorn (ThM)µgl0.5<0.40.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0.5.5<0	cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
2.4-dintoropriane µµL 0.5 40.5 40.5 1.0 1.0 1.0 1.2-dichtorophane µµL 0.5 40.5<	Bromochloromethane	µg/L	0.5	<0.5	<0.5	-	-	-
12-dichloredhane pgl 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Chloroform (THM)	µg/L	0.5	<0.5	<0.5	-	-	-
1.1-trichloroethane µµL 0.5 <0.5	2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
1.1-dkhorpropene jpL 0.5 -0.5	1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
Carbon tetrahonide jpl 0.5 0.05	1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
Dbromembane µgL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	-	-	-
1/2-dickloropropane μpL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td>Carbon tetrachloride</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td> <td>-</td>	Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	-	-	-
Tichioroethene (Tichioroethylene,TCE)µgL0.5<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<0.0<	Dibromomethane	µg/L	0.5	<0.5	<0.5	-	-	-
2-hiropropaneµg/L100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100<100 <td>1,2-dichloropropane</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td> <td>-</td>	1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
Bronderhoremethane (THM) $\mu g \Lambda$ 0.5 <th< td=""><td>Trichloroethene (Trichloroethylene,TCE)</td><td>µg/L</td><td>0.5</td><td><0.5</td><td><0.5</td><td>-</td><td>-</td><td>-</td></th<>	Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	-	-	-
MBK (4-methyl-2-pentanone)µgL5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5 </td <td>2-nitropropane</td> <td>µg/L</td> <td>100</td> <td><100</td> <td><100</td> <td>-</td> <td>-</td> <td>-</td>	2-nitropropane	µg/L	100	<100	<100	-	-	-
dis-1,3-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	Bromodichloromethane (THM)	µg/L				-	-	-
trans-13-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	MIBK (4-methyl-2-pentanone)	µg/L				-	-	-
1,2-trichlorogethane µg/L 0.5 <0.5	cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3-dichloropropaneµg/L0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<						-	-	-
Dibromochloromethane (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1,2-trichloroethane	µg/L				-	-	-
2-hexanone (MBK) µg/L 5 <5								-
1.2.dbromoethane (EDB)µg/L0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>								-
Tetrachloroethene (Perchloroethylene,PCE) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>						-	-	-
1,1,2-2terachloroethane µg/L 0.5 <								
Chorosbenzene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5								
Bromoform (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5								
Styrene (Vinyl benzene) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.								
1,1,2,2-tetrachloroethane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5								
1,2,3-trichloropropane								
trans-1.4-dichloro-2-butene ug/L 1 <1 <1								
	trans-1,4-dichloro-2-butene	µg/L	1	<1	<1			
Isopropylbenzene (Cumene) µg/L 0.5 <0.5	Isopropyibenzene (Cumene)	µg/L	0.5	<0.5	<0.5	-	-	-

SE272743 R0

VOCs in Water [AN433] Tested: 23/10/2024 (continued)

			BH107M BH109M		QD_241017	QR_241017	GW_QTS1
			WATER	WATER	WATER	WATER	WATER
			- 17/10/2024	- 17/10/2024	- 17/10/2024	- 17/10/2024	- 17/10/2024
PARAMETER	UOM	LOR	SE272743.001	SE272743.002	SE272743.003	SE272743.004	SE272743.005
Bromobenzene	μg/L	0.5	<0.5	<0.5	-	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	-	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	-	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Total VOC	µg/L	10	<10	<10	-	-	-

SE272743 R0

VOCs in Water [AN433] Tested: 23/10/2024 (continued)

			GW_QTB1
			WATER -
			17/10/2024
PARAMETER	UOM	LOR	SE272743.006
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene (VOC)*	µg/L	0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	-
Chloromethane	µg/L	5	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-
Bromomethane	µg/L	10	-
Chloroethane	µg/L	5	-
Trichlorofluoromethane	µg/L	1	-
Acetone (2-propanone)	μg/L	10	-
lodomethane	μg/L	5	
1,1-dichloroethene	μg/L	0.5	-
Acrylonitrile	μg/L	0.5	-
Dichloromethane (Methylene chloride)	μg/L	5	-
Allyl chloride	μg/L	2	_
Carbon disulfide	μg/L	2	-
trans-1,2-dichloroethene	µg/L	0.5	
MtBE (Methyl-tert-butyl ether)	μg/L	0.5	
1,1-dichloroethane			-
	µg/L	0.5	
Vinyl acetate*	µg/L	10	-
MEK (2-butanone)	µg/L	10	
cis-1,2-dichloroethene	µg/L	0.5	-
Bromochloromethane	µg/L	0.5	-
Chloroform (THM)	µg/L	0.5	-
2,2-dichloropropane	µg/L	0.5	-
1,2-dichloroethane	µg/L	0.5	-
1,1,1-trichloroethane	µg/L	0.5	-
1,1-dichloropropene	µg/L	0.5	-
Carbon tetrachloride	µg/L	0.5	-
Dibromomethane	µg/L	0.5	-
1,2-dichloropropane	µg/L	0.5	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-
2-nitropropane	µg/L	100	-
Bromodichloromethane (THM)	µg/L	0.5	-
MIBK (4-methyl-2-pentanone)	µg/L	5	-
cis-1,3-dichloropropene	µg/L	0.5	-
trans-1,3-dichloropropene	µg/L	0.5	-
1,1,2-trichloroethane	µg/L	0.5	-
1,3-dichloropropane	µg/L	0.5	-
Dibromochloromethane (THM)	µg/L	0.5	-
2-hexanone (MBK)	µg/L	5	-
1,2-dibromoethane (EDB)	µg/L	0.5	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-
Chlorobenzene	µg/L	0.5	-
Bromoform (THM)	μg/L	0.5	
Styrene (Vinyl benzene)	μg/L	0.5	_
1,1,2,2-tetrachloroethane	μg/L	0.5	-
1,2,3-trichloropropane	μg/L	0.5	
.,_,			-
trans-1 4-dichloro-2-butene	ua/l		
trans-1,4-dichloro-2-butene Isopropylbenzene (Cumene)	μg/L μg/L	0.5	-

SE272743 R0

VOCs in Water [AN433] Tested: 23/10/2024 (continued)

			GW_QTB1	
			WATER	
			17/10/2024	
PARAMETER	UOM	LOR	SE272743.006	
Bromobenzene	µg/L	0.5	-	
n-propylbenzene	µg/L	0.5	-	
2-chlorotoluene	µg/L	0.5	-	
4-chlorotoluene	µg/L	0.5	-	
1,3,5-trimethylbenzene	µg/L	0.5	-	
tert-butylbenzene	μg/L	0.5	-	
1,2,4-trimethylbenzene	μg/L	0.5	-	
sec-butylbenzene	μg/L	0.5	-	
1,3-dichlorobenzene	μg/L	0.5	-	
1,4-dichlorobenzene	μg/L	0.3	-	
p-isopropyltoluene	µg/L	0.5	-	
1,2-dichlorobenzene	μg/L	0.5	-	
n-butylbenzene	µg/L	0.5	-	
1,2-dibromo-3-chloropropane	μg/L	0.5	-	
1,2,4-trichlorobenzene	µg/L	0.5	-	
Hexachlorobutadiene	μg/L	0.5	-	
1,2,3-trichlorobenzene	µg/L	0.5	-	
Total VOC	µg/L	10	-	

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 23/10/2024

			BH107M	BH109M	QD_241017	QR_241017
			WATER	WATER	WATER	WATER
			17/10/2024	17/10/2024	17/10/2024	
PARAMETER	UOM	LOR	SE272743.001	SE272743.002	SE272743.003	SE272743.004
TRH C6-C9	µg/L	40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 21/10/2024

			BH107M	BH109M	QD_241017	QR_241017
			WATER	WATER	WATER	WATER
			17/10/2024	17/10/2024	17/10/2024	17/10/2024
PARAMETER	UOM	LOR	SE272743.001	SE272743.002	SE272743.003	SE272743.004
TRH C10-C14	µg/L	50	77	69	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	97	84	<60	93
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	97	84	<60	93
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	400	<320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 21/10/2024

			BH107M WATER	BH109M WATER
			-	-
PARAMETER	UOM	LOR	17/10/2024	17/10/2024
Naphthalene	μg/L	0.1	SE272743.001	SE272743.002
		0.1	<0.1	<0.1
2-methylnaphthalene	µg/L		-	-
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1

Total Phenolics in Water [AN295] Tested: 21/10/2024

			BH107M	BH109M
			WATER	WATER
				-
			17/10/2024	17/10/2024
PARAMETER	UOM	LOR	SE272743.001	SE272743.002
Total Phenols	mg/L	0.05	<0.05	<0.05

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 23/10/2024

			BH107M	BH109M	QD_241017	QR_241017
			WATER	WATER	WATER	WATER
			- 17/10/2024	- 17/10/2024	- 17/10/2024	- 17/10/2024
PARAMETER	UOM	LOR	SE272743.001	SE272743.002	SE272743.003	SE272743.004
Arsenic	µg/L	1	20	20	26	<1
Cadmium	µg/L	0.1	0.8	0.2	0.3	<0.1
Chromium	µg/L	1	<1	<1	<1	<1
Copper	µg/L	1	3	<1	<1	<1
Lead	μg/L	1	<1	<1	<1	<1
Nickel	μg/L	1	32	27	29	<1
Zinc	µg/L	5	45	63	81	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 21/10/2024

			BH107M	BH109M	QD_241017	QR_241017
			WATER	WATER	WATER	WATER
						-
			17/10/2024	17/10/2024	17/10/2024	17/10/2024
PARAMETER	UOM	LOR	SE272743.001	SE272743.002	SE272743.003	SE272743.004
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001

ANALYTICAL RESULTS

SE272743 R0

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples [AN404] Tested: 21/10/2024

			BH107M	BH109M
			WATER	WATER
			-	-
PARAMETER	UOM	LOR	17/10/2024 SE272743.001	17/10/2024 SE272743.002
Perfluorobutanoic acid (PFBA)	µg/L	0.05	<0.05	<0.05
Perfluoropentanoic acid (PFPeA)	µg/L	0.01	<0.01	<0.01
Perfluorohexanoic acid (PFHxA)	µg/L	0.01	<0.01	<0.01
Perfluoroheptanoic acid (PFHpA)	µg/L	0.01	<0.01	<0.01
Perfluorooctanoic acid (PFOA)	µg/L	0.01	<0.01	<0.01
Perfluorononanoic acid (PFNA)	µg/L	0.01	<0.01	<0.01
Perfluorodecanoic acid (PFDA)	µg/L	0.01	<0.01	<0.01
Perfluoroundecanoic acid (PFUnDA)	µg/L	0.01	<0.01	<0.01
Perfluorododecanoic acid (PFDoDA)	µg/L	0.01	<0.01	<0.01
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.01	<0.01	<0.01
Perfluorotridecanoic acid (PFTrDA)	µg/L	0.01	<0.01	<0.01
Perfluoropropane sulfonic acid (PFPrS)	µg/L	0.01	<0.01	<0.01
Perfluorobutane sulfonic acid (PFBS)	µg/L	0.01	<0.01	<0.01
Perfluoropentane sulfonic acid (PFPeS)	µg/L	0.01	<0.01	<0.01
Perfluorohexane sulfonic acid (PFHxS)	µg/L	0.01	<0.01	<0.01
Perfluoroheptane sulfonic acid (PFHpS)	µg/L	0.01	<0.01	<0.01
Perfluorooctane sulfonic acid (PFOS)	µg/L	0.01	<0.01	<0.01
Perfluorononane sulfonic acid (PFNS)	µg/L	0.01	<0.01	<0.01
Perfluorodecane sulfonic acid (PFDS)	µg/L	0.01	<0.01	<0.01
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)	µg/L	0.01	<0.01	<0.01
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	µg/L	0.01	<0.01	<0.01
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	µg/L	0.01	<0.01	<0.01
1H,1H,2H,2H-Perfluorododecane sulfonic acid (10:2	µg/L	0.01	<0.01	<0.01
Perfluorooctane sulfonamide (FOSA)	µg/L	0.01	<0.01	<0.01
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	µg/L	0.01	<0.01	<0.01
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	µg/L	0.01	<0.01	<0.01
N-Methylperfluorooctanesulfonamidoacetic acid	µg/L	0.05	<0.05	<0.05
N-Ethylperfluorooctanesulfonamidoacetic acid	µg/L	0.05	<0.05	<0.05
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	µg/L	0.05	<0.05	<0.05
2-(N-Methylperfluorooctane sulfonamido)-ethanol	µg/L	0.05	<0.05	<0.05
Sum of PFOS and PFHxS	µg/L	0.01	<0.01	<0.01
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	µg/L	0.01	<0.01	<0.01
Sum of US EPA PFAS (PFOS+PFOA)	µg/L	0.01	<0.01	<0.01
Sum of PFAS A	µg/L	0.01	<0.01	<0.01
Sum of PFAS B	µg/L	0.01	<0.01	<0.01
Sum of PFAS C	µg/L	0.01	<0.01	<0.01
Sum of Positive PFAS	µg/L	0.01	<0.01	<0.01

METHOD	
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN295	The water sample or extract of sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN404	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts. After spiking with isotopically labelled quantification surrogates and sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification. PFOS and PFHXS are determined as the total of linear and branched isomers.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply. NVL IS I NR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of î↓ Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		TAILS	
Contact Client Address	Joel Heininger EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	joel.heininger@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa St & 890-895 Woodville R	SGS Reference	SE273394 R0
Order Number	E25635	Date Received	31/10/2024
Samples	3	Date Reported	5/11/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Senior Chemist

10_ Shane MCDERMOTT

Laboratory Manager

SGS Australia Pty Ltd ABN 44 000 964 278

5/11/2024

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

VOC's in Soil [AN433] Tested: 31/10/2024

			BH114_2.5-2.6	BH115_2.4-2.5	BH115_2.5-2.6
PARAMETER	UOM	LOR	SOIL - 30/10/2024 SE273394.001	SOIL - 30/10/2024 SE273394.002	SOIL - 30/10/2024 SE273394.003
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 31/10/2024

			BH114_2.5-2.6	BH115_2.4-2.5	BH115_2.5-2.6
			SOIL	SOIL	SOIL
			30/10/2024	30/10/2024	30/10/2024
PARAMETER	UOM	LOR	SE273394.001	SE273394.002	SE273394.003
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 31/10/2024

			BH114_2.5-2.6	BH115_2.4-2.5	BH115_2.5-2.6
			SOIL	SOIL	SOIL
			30/10/2024	30/10/2024	30/10/2024
PARAMETER	UOM	LOR	SE273394.001	SE273394.002	SE273394.003
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

Moisture Content [AN002] Tested: 31/10/2024

			BH114_2.5-2.6	BH115_2.4-2.5	BH115_2.5-2.6
			SOIL	SOIL	SOIL
			30/10/2024	30/10/2024	30/10/2024
PARAMETER	UOM	LOR	SE273394.001	SE273394.002	SE273394.003
% Moisture	%w/w	1	18.0	17.7	19.1

ANALYTICAL RESULTS

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 31/10/2024

			BH114_2.5-2.6	BH115_2.4-2.5	BH115_2.5-2.6
			SOIL	SOIL	SOIL
					-
			30/10/2024	30/10/2024	30/10/2024
PARAMETER	UOM	LOR	SE273394.001	SE273394.002	SE273394.003
Lead, Pb	mg/kg	1	19	14	18

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.
***	Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for
 LNR analysis.
 Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

Appendix J – Laboratory QA/QC Policies and DQOS

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Jesny Marshal El AUSTRALIA SUITE 6.01 55 MILLER STREET	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile Email	(Not specified) jesny.marshal@eiaustralia.com.au	Facsimile Email	+61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E25635 15 Hilwa Street &890-898 Woodvill E25635 25	SGS Reference Date Received Date Reported	SE272334 R0 10 Oct 2024 17 Oct 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	1 item
Duplicate	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	6 items
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items
Matrix Spike	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	3 items
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item

Sample counts by matrix	24 Soil, 1 Water	Type of documentation received	COC	
Date documentation received	10/10/2024	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	15.4°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

Method: ME (ALD JENN/JAS4064/AN602

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Eibre Identification in coll

Fibre identification in soli							Method: ME-(AU)-	1EINVJA54904/AM002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE272334.001	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH102_0.2-0.3	SE272334.002	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH103_0.1-0.2	SE272334.003	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH104_0.1-0.2	SE272334.004	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH105_0.2-0.3	SE272334.006	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH106_0.2-0.3	SE272334.007	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH107M_0.3-0.4	SE272334.009	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH108_0.2-0.3	SE272334.011	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH109M_0.2-0.3	SE272334.012	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH110_0.1-0.2	SE272334.014	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH111_0.1-0.2	SE272334.016	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH112_0.1-0.2	SE272334.018	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
BH113M_0.1-0.2	SE272334.020	LB326638	10 Oct 2024	10 Oct 2024	10 Oct 2025	14 Oct 2024	10 Oct 2025	17 Oct 2024
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV	AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR_241010	SE272334.023	LB326532	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	15 Oct 2024

HH10 10 10 10 02 07 Nev 2024 14 0.0 Nev 2024 16 0.0 HH10 0.1 22 227334.001 LB328666 10 0.0 2204 07 Nev 2024 16 0.0 2204 16 0.0 2204 07 Nev 2024 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0 2204 16 0.0<	Mercury in Soil							Method: I	ME-(AU)-[ENV]AN3
HH20_26-33 SE27233-002 LB328666 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH30_10-102 SE27233-004 LB328666 10 0ct 2024 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH30_40-65 SE27233-005 LB328666 10 0ct 2024 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH50_5.0-2.03 SE27233-007 LB328666 10 0ct 2024 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH50_5.0-2.03 SE272334.009 LB328666 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH70_0.0-0.03 SE272334.001 LB328666 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH70_0.0-0.03 SE272334.012 LB328666 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH70_0.0-0.03 SE272334.012 LB328666 10 0ct 2024 07 Nov 2024 14 0ct 2024 07 Nov 2024 16 0ct 2024 HH10_0.0-0.02 SE272334.014 LB328666<	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
HH03_01-0.2 SE27234.003 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH03_01-0.2 SE27234.004 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH05_0.2-0.3 SE27234.006 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH05_0.2-0.3 SE27234.006 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH07_0.0-3.04 SE27234.008 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH07_0.0-3.04 SE27234.011 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH09_0.0-2.0 SE27234.011 LB326666 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10_0.4-0.5 SE27234.015 LB326666 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2	BH101_0.1-0.2	SE272334.001	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
H104_01-02 SE27234_004 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H105_0.2-0.3 SE27234_005 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 10 Oct 2024 07 Nov 2024 16 O	BH102_0.2-0.3	SE272334.002	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
H104_0.4-0.5 SE27234.005 LB326566 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H105_0.2-0.3 SE27234.006 LB326666 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H105_0.2-0.3 SE27234.008 LB326666 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H107_M_0.3-0.4 SE27234.009 LB326666 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H107_M_0.3-0.4 SE27234.011 LB326566 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H108_0_0.2-0.3 SE27234.011 LB326566 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H110_0.4-0.5 SE27234.014 LB326566 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07 Nev 2024 16 0cl 2024 H110_0.4-0.5 SE27234.015 LB326566 10 0cl 2024 10 0cl 2024 07 Nev 2024 14 0cl 2024 07	BH103_0.1-0.2	SE272334.003	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH06_0.2-0.3 SE27234.006 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2024 16 Oct 2024 HH06_0.2-0.3 SE27234.007 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2024 16 Oct 2024 HH07_0.2-0.3 SE27234.009 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2024 16 Oct 2024 HH07_0.3-0.4 SE27234.001 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2024 16 Oct 2024 HH06_0.2-0.3 SE27234.011 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 16 Oct 2024 07 Nev 2024 16 Oct 2024 HH10_0.1-0.2 SE27234.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2024 16 Oct 2024 HH10_0.1-0.2 SE27234.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2024 16 Oct 2024 HH11_0.0-1.0 SE27234.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nev 2024 14 Oct 2024 07 Nev 2	BH104_0.1-0.2	SE272334.004	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH06, 0.2-0.3 SE272334.007 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH06, 0.2-0.8 SE272334.008 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH070, 0.3-0.3 SE272334.010 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH08, 0.2-0.3 SE272334.011 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH09, 0.2-0.3 SE272334.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10, 0.4-0 SE272334.014 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11, 0.4-0 SE272334.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11, 0.4-0 SE272334.016 LB326566 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 <	BH104_0.4-0.5	SE272334.005	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH06_0.7-0.8 SE272334.008 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH07M_0.9-0 SE272334.009 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH08_0.2-0.3 SE272334.011 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH08_0.2-0.3 SE272334.012 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10_0.1-0.2 SE272334.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-1.0 SE27233.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-1.0 SE27233.016 LB326566 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-1.0 SE27233.0.016 LB326566 10 Oct 2024 <td>BH105_0.2-0.3</td> <td>SE272334.006</td> <td>LB326566</td> <td>10 Oct 2024</td> <td>10 Oct 2024</td> <td>07 Nov 2024</td> <td>14 Oct 2024</td> <td>07 Nov 2024</td> <td>16 Oct 2024</td>	BH105_0.2-0.3	SE272334.006	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH07M_0.3.0.4 SE27233.009 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH07M_0.8.0.9 SE27233.010 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH09M_0.2.0.3 SE27233.012 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH09M_0.2.0.3 SE27233.011 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10.0.1.0 SE27233.011 LB326566 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11.0.0.1.0 SE27233.016 LB326566 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11.0.0.1.0 SE27233.017 LB326566 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11.0.0.0.1 SE27233.019 LB326567 10 Oct 2024 07 Nov 2024 10 Oct 2024	BH106_0.2-0.3	SE272334.007	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
H107M_0.8-0.9 SE27233.010 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H108_0.2-0.3 SE27233.011 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H109M_1.0-1.1 SE27233.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H110_0.1-0.2 SE27233.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H111_0.0-0.5 SE27233.017 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H111_0.0-0.7 SE27233.017 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H111_0.0-0.7 SE27233.017 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H111_0.0-0.7 SE27233.017 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov	BH106_0.7-0.8	SE272334.008	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH06_0.2-0.3 SE27233.011 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH09M_0.2-0.3 SE27233.012 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH109.0-1.0.1 SE27233.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10_0.0-0.2 SE27233.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-0.2 SE27233.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-0.2 SE27233.018 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.0-0.5 SE27233.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.0-0.5 SE27233.019 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov	BH107M_0.3-0.4	SE272334.009	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH109ML 0.2-0.3 SE272334.012 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH109ML 0.2-1.1 SE272334.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH100_01-0.2 SE272334.014 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH110_04.0 SE272334.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-0.7 SE272334.017 LB326566 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH112_0.0-0.7 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH13_0.0-0.7 SE272334.019 LB326567 10 Oct 2024 07 Nov 2024 17 Oct 2024 17 Oct 2024 HH13_0.0-0.7 SE272334.021 LB326567 10 Oct 2024 07 Nov 2024 17 Oct 2	BH107M_0.8-0.9	SE272334.010	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH109M_1.0-1.1 SE272334.013 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10_0.1-0.2 SE272334.014 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH10_0.4-0.5 SE272334.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-0.7 SE272334.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.0-0.7 SE27234.018 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.0-0.7 SE27234.018 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH13_0.0-0.7 SE27234.021 LB326567 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 HH13_0.0-0.7 SE27234.022 LB326552 10 Oct 2024 <td>BH108_0.2-0.3</td> <td>SE272334.011</td> <td>LB326566</td> <td>10 Oct 2024</td> <td>10 Oct 2024</td> <td>07 Nov 2024</td> <td>14 Oct 2024</td> <td>07 Nov 2024</td> <td>16 Oct 2024</td>	BH108_0.2-0.3	SE272334.011	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH10_0.1-0.2 SE272334.014 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0_0.4-0.5 SE272334.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0_0.4-0.5 SE272334.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH112_0.1-0.2 SE272334.017 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.1-0.2 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.1-0.2 SE272334.020 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 HH13_0.0-6.0.7 SE272334.021 LB326567 10 Oct 2024 07 Nov 2024 17 Oct 2024 17 Oct 2024 D1_2_4t1010 SE272334.021 LB32	BH109M_0.2-0.3	SE272334.012	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
H110_0.4.0.5 SE272334.015 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.1-0.2 SE272334.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11_0.1-0.2 SE272334.017 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.1-0.2 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12_0.0+0.5 SE272334.019 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 HH13_M_0.0+0.2 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 HH12_0.1+0.2 SE272334.022 LB326567 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Sample No. OC Ref Sample No Received	BH109M_1.0-1.1	SE272334.013	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH11 D. 1-0.2 SE272334.016 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH11 0.6-0.7 SE272334.017 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12 0.1-0.2 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 HH12 0.1-0.2 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 16 Oct 2024 HH13 0.6-0.7 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 AD1_241010 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 AD1_241010 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 07 Nov 2024 17 Oct 2024 17 Oct 2024 AD1_241010 SE272334.001 LB326552	BH110_0.1-0.2	SE272334.014	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
SE272334.017 LB326656 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 NH112_0.1-0.2 SE272334.018 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 NH112_0.1-0.2 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 NH113_0.0-0.7 SE272334.020 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 ND-14113M_0.0-0.7 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 ND-1241010 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Seample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysis 4 NH10_0_1-0.2 SE272334.001 LB326552 10 Oct 2024	BH110_0.4-0.5	SE272334.015	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
H112_0.1-0.2 SE272334.018 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H112_0.1-0.2 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 H113M_0.1-0.2 SE272334.020 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 H113M_0.6-0.7 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 AD1_241010 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Sample Name	BH111_0.1-0.2	SE272334.016	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
H112_0.40.5 SE272334.019 LB326566 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 16 Oct 2024 BH113M_0.1-0.2 SE272334.020 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 BH113M_0.6-0.7 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 DD1_241010 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Obsture Content SE272334.022 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH101_0.1-0.2 SE272334.001 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH104_0.1-0.2 SE272334.005 LB3	BH111_0.6-0.7	SE272334.017	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
NH113M_0.1-0.2 SE272334.020 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 NH113M_0.6-0.7 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 ND1_241010 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 oisture Content SE272334.022 LB326552 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Signple Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed WH101_0.1-0.2 SE272334.001 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH102_0.2-0.3 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH104_0.1-0.2 SE272334.006 LB326552	BH112_0.1-0.2	SE272334.018	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
HH13M_0.6-0.7 SE272334.021 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 AD1_241010 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Oisture Content Method: SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed SH101_0.1-0.2 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH104_0_0.4-0.5 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH104_0_0.4-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 202	BH112_0.4-0.5	SE272334.019	LB326566	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	16 Oct 2024
ND1_241010 SE272334.022 LB326567 10 Oct 2024 10 Oct 2024 07 Nov 2024 14 Oct 2024 07 Nov 2024 17 Oct 2024 oisture Content Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed SH101_0.1-0.2 SE272334.001 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH104_0.1-0.2 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH104_0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH104_0.0-4-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH106_0.2-0.3 SE272334.005 LB326552	BH113M_0.1-0.2	SE272334.020	LB326567	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	17 Oct 2024
Method: ME-(AU)-[ENV]AN Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed 8H101_0.1-0.2 SE272334.001 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H103_0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H104_0.1-0.2 SE272334.004 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H104_0.1-0.2 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H104_0.0-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H106	BH113M_0.6-0.7	SE272334.021	LB326567	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	17 Oct 2024
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed WH101_0.1-0.2 SE272334.001 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH103_0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH103_0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH104_0.1-0.2 SE272334.004 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH104_0.0-4.0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 WH106_0.2-0.3 SE272334.007 LB326552	QD1_241010	SE272334.022	LB326567	10 Oct 2024	10 Oct 2024	07 Nov 2024	14 Oct 2024	07 Nov 2024	17 Oct 2024
Bit 101_0.1-0.2 SE272334.001 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 103_0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 104_0.1-0.2 SE272334.004 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 104_0.0-4.0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 105_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 Bit 106_0.7-0.8 SE272334.007 </th <th>Moisture Content</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Method: I</th> <th>ME-(AU)-[ENV]ANO</th>	Moisture Content							Method: I	ME-(AU)-[ENV]ANO
H102_0.2-0.3 SE272334.002 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH103_0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH104_0.1-0.2 SE272334.004 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH104_0.4-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH105_0.2-0.3 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.7-0.8 SE272334.008 LB3	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
WH 10 0.1-0.2 SE272334.003 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H104_0.1-0.2 SE272334.004 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H104_0.4-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H105_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H106_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H106_0.2-0.3 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H106_0.7-0.8 SE272334.009 <td>BH101_0.1-0.2</td> <td>SE272334.001</td> <td>LB326552</td> <td>10 Oct 2024</td> <td>10 Oct 2024</td> <td>24 Oct 2024</td> <td>14 Oct 2024</td> <td>19 Oct 2024</td> <td>15 Oct 2024</td>	BH101_0.1-0.2	SE272334.001	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH104_0.1-0.2 SE272334.004 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH104_0.4-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH105_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.7-0.8 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.8-0.9 SE272334.010	BH102_0.2-0.3	SE272334.002	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
SH104_0.4-0.5 SE272334.005 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH105_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH106_0.7-0.8 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH107M_0.8-0.9 SE272334.009 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH107M_0.8-0.9 SE272334.010 <td< td=""><td>BH103_0.1-0.2</td><td>SE272334.003</td><td>LB326552</td><td>10 Oct 2024</td><td>10 Oct 2024</td><td>24 Oct 2024</td><td>14 Oct 2024</td><td>19 Oct 2024</td><td>15 Oct 2024</td></td<>	BH103_0.1-0.2	SE272334.003	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH105_0.2-0.3 SE272334.006 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.7-0.8 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.3-0.4 SE272334.009 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024	BH104_0.1-0.2	SE272334.004	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH106_0.2-0.3 SE272334.007 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.2-0.3 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH106_0.7-0.8 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.3-0.4 SE272334.009 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 BH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024	BH104_0.4-0.5	SE272334.005	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
NH106_0.7-0.8 SE272334.008 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH106_0.7-0.8 SE272334.009 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH107M_0.3-0.4 SE272334.009 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 SH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024	BH105_0.2-0.3	SE272334.006	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
WH107M_0.3-0.4 SE272334.009 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024 8H107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024	BH106_0.2-0.3	SE272334.007	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH107M_0.8-0.9 SE272334.010 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024	BH106_0.7-0.8	SE272334.008	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
	BH107M_0.3-0.4	SE272334.009	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
SH108_0.2-0.3 SE272334.011 LB326552 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 19 Oct 2024 15 Oct 2024	BH107M_0.8-0.9	SE272334.010	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
	BH108_0.2-0.3	SE272334.011	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024

10 Oct 2024

10 Oct 2024

10 Oct 2024

10 Oct 2024

24 Oct 2024

24 Oct 2024

24 Oct 2024

24 Oct 2024

14 Oct 2024

14 Oct 2024

14 Oct 2024

14 Oct 2024

19 Oct 2024

19 Oct 2024

19 Oct 2024

19 Oct 2024

BH109M 0.2-0.3

BH109M_1.0-1.1

BH110 0.1-0.2

BH110_0.4-0.5

SE272334.012

SE272334.013

SE272334.014

SE272334.015

LB326552

LB326552

LB326552

LB326552

10 Oct 2024

10 Oct 2024

10 Oct 2024

10 Oct 2024

15 Oct 2024

15 Oct 2024

15 Oct 2024

15 Oct 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Moisture Content (continued)

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH111_0.1-0.2	SE272334.016	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH111_0.6-0.7	SE272334.017	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH112_0.1-0.2	SE272334.018	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH112_0.4-0.5	SE272334.019	LB326552	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH113M_0.1-0.2	SE272334.020	LB326553	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
BH113M_0.6-0.7	SE272334.021	LB326553	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
QD1_241010	SE272334.022	LB326553	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
QTB1	SE272334.025	LB326553	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	19 Oct 2024	15 Oct 2024
	02272004.020	20020000	10 000 2024	10 000 2024	24 00(2024	14 000 2024		
C Pesticides in Soll								ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE272334.001	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH102_0.2-0.3	SE272334.002	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH103_0.1-0.2	SE272334.003	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH104_0.1-0.2	SE272334.004	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H104_0.4-0.5	SE272334.005	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH105_0.2-0.3	SE272334.006	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.2-0.3	SE272334.007	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.7-0.8	SE272334.008	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H107M_0.3-0.4	SE272334.009	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
8H107M_0.8-0.9	SE272334.010	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H108_0.2-0.3	SE272334.011	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H109M_0.2-0.3	SE272334.012	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H109M_1.0-1.1	SE272334.013	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
H110_0.1-0.2	SE272334.014	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
H110 0.4-0.5	SE272334.015	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H111_0.1-0.2	SE272334.016	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH111_0.6-0.7	SE272334.017	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H112_0.1-0.2	SE272334.018	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
8H112_0.4-0.5	SE272334.019	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H112_0.4 0.0 3H113M_0.1-0.2	SE272334.020	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	15 Oct 2024
BH113M_0.6-0.7	SE272334.021	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	
QD1_241010	SE272334.021	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024 24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024 16 Oct 2024
	3E212334.022	LB320336	10 OCI 2024	10 OCI 2024	24 OCI 2024	14 OCI 2024		
P Pesticides in Soil							Method:	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101_0.1-0.2	SE272334.001	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H102_0.2-0.3	SE272334.002	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H103_0.1-0.2	SE272334.003	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH104_0.1-0.2	SE272334.004	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH104_0.4-0.5	SE272334.005	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H105_0.2-0.3	SE272334.006	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.2-0.3	SE272334.007	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.7-0.8	SE272334.008	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H107M_0.3-0.4	SE272334.009	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H107M_0.8-0.9	SE272334.010	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
H108_0.2-0.3	SE272334.011	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
H109M_0.2-0.3	SE272334.012	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
H109M_1.0-1.1	SE272334.013	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
H110_0.1-0.2	SE272334.014	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
H110_0.4-0.5	SE272334.015	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
H111_0.1-0.2	SE272334.016	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
8H111_0.6-0.7	SE272334.017	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 202
	SE272334.018	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H112 0.1-0.2	022.2004.010					14 Oct 2024	23 Nov 2024	
3H112_0.1-0.2	SE272334 010	I B326537	10 0ct 2024					
3H112_0.4-0.5	SE272334.019	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024			17 Oct 2024
	SE272334.019 SE272334.020 SE272334.021	LB326537 LB326538 LB326538	10 Oct 2024 10 Oct 2024 10 Oct 2024	10 Oct 2024 10 Oct 2024 10 Oct 2024	24 Oct 2024 24 Oct 2024 24 Oct 2024	14 Oct 2024 14 Oct 2024 14 Oct 2024	23 Nov 2024 23 Nov 2024 23 Nov 2024	16 Oct 2024 16 Oct 2024

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Sample Name Sample No. QC Ref Method: ME-(AU)-[ENV]AN420

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

	c Hydrocarbons) in Soil (co							ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE272334.001	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH102_0.2-0.3	SE272334.002	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H103_0.1-0.2	SE272334.003	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H104_0.1-0.2	SE272334.004	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H104_0.4-0.5	SE272334.005	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H105_0.2-0.3	SE272334.006	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.2-0.3	SE272334.007	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH106_0.7-0.8	SE272334.008	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH107M_0.3-0.4	SE272334.009	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H107M_0.8-0.9	SE272334.010	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H108_0.2-0.3	SE272334.011	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H109M_0.2-0.3	SE272334.012	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H109M_1.0-1.1	SE272334.013	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H110_0.1-0.2	SE272334.014	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H110_0.4-0.5	SE272334.015	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
	SE272334.016	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
	SE272334.017	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
	SE272334.018	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H112_0.4-0.5	SE272334.019	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H113M_0.1-0.2	SE272334.020	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
	SE272334.021	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
QD1_241010	SE272334.022	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
CBs in Soil							Method: M	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101_0.1-0.2	SE272334.001	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
H102_0.2-0.3	SE272334.002	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H103_0.1-0.2	SE272334.003	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H104_0.1-0.2	SE272334.004	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H104_0.4-0.5	SE272334.005	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H105_0.2-0.3	SE272334.006	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.2-0.3	SE272334.007	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H106_0.7-0.8	SE272334.008	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H107M_0.3-0.4	SE272334.009	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH107M_0.8-0.9	SE272334.010	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H108_0.2-0.3	SE272334.011	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H109M_0.2-0.3	SE272334.012	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H109M_1.0-1.1	SE272334.013	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H110_0.1-0.2	SE272334.014	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H110_0.4-0.5	SE272334.015	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H111_0.1-0.2	SE272334.016	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H111_0.6-0.7	SE272334.017	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H112_0.1-0.2	SE272334.018	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
3H112_0.4-0.5	SE272334.019	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
3H113M_0.1-0.2	SE272334.020	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	15 Oct 2024
3H113M_0.6-0.7	SE272334.021	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
QD1_241010	SE272334.022	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024
otal Phenolics in Soil							Method: M	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH107M_0.3-0.4	SE272334.009	LB326731	10 Oct 2024	10 Oct 2024	24 Oct 2024	15 Oct 2024	24 Oct 2024	15 Oct 2024
3H109M_0.2-0.3								
	SE272334.012	LB326731	10 Oct 2024	10 Oct 2024	24 Oct 2024	15 Oct 2024	24 Oct 2024	15 Oct 2024
3H113M_0.1-0.2	SE272334.020	LB326731	10 Oct 2024	10 Oct 2024	24 Oct 2024	15 Oct 2024	24 Oct 2024	15 Oct 2024
	nts in Soil/Waste Solids/Mat	-)-[ENV]AN040/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101_0.1-0.2	SE272334.001	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
3H102_0.2-0.3	SE272334.002	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
3H103_0.1-0.2	SE272334.003	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
3H104_0.1-0.2	SE272334.004	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
	SE272334.005	LB326559	10 Oct 2024		08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH105_0.2-0.3	SE272334.006	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH106_0.2-0.3	SE272334.007	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH106_0.7-0.8	SE272334.008	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH107M_0.3-0.4	SE272334.009	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH107M_0.8-0.9	SE272334.010	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH108_0.2-0.3	SE272334.011	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH109M_0.2-0.3	SE272334.012	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH109M_1.0-1.1	SE272334.013	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH110_0.1-0.2	SE272334.014	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH110_0.4-0.5	SE272334.015	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH111_0.1-0.2	SE272334.016	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH111_0.6-0.7	SE272334.017	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH112_0.1-0.2	SE272334.018	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH112_0.4-0.5	SE272334.019	LB326559	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH113M_0.1-0.2	SE272334.020	LB326560	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
BH113M_0.6-0.7	SE272334.021	LB326560	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
QD1_241010	SE272334.022	LB326560	10 Oct 2024	10 Oct 2024	08 Apr 2025	14 Oct 2024	08 Apr 2025	16 Oct 2024
ace Metals (Dissolved) in	Water by ICPMS						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

10 Oct 2024

TDU (To	tal Passwar	able Hydro	(oorbone)	n Coll

SE272334.023

SE272334.001

SE272334.002

SE272334.005

SE272334.007

SE272334.008

SE272334.009

LB326753

10 Oct 2024

QR 241010

Sample Name

BH101_0.1-0.2

BH102 0.2-0.3

BH103_0.1-0.2

BH104_0.1-0.2

BH104 0.4-0.5

BH105_0.2-0.3

BH106 0.2-0.3

BH106_0.7-0.8

BH107M_0.3-0.4

BH107M 0.8-0.9

Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 LB326537 10 Oct 2024 23 Nov 2024 16 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 SE272334.003 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 SE272334.004 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 24 Oct 2024 SE272334.006 LB326537 10 Oct 2024 10 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024 SE272334.010 LB326537 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 23 Nov 2024 16 Oct 2024

08 Apr 2025

15 Oct 2024

08 Apr 2025

17 Oct 2024

Method: ME-(AU)-[ENV]AN403

BH108_0.2-0.3	SE272334.011	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH109M_0.2-0.3	SE272334.012	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH109M_1.0-1.1	SE272334.013	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH110_0.1-0.2	SE272334.014	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH110_0.4-0.5	SE272334.015	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH111_0.1-0.2	SE272334.016	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH111_0.6-0.7	SE272334.017	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH112_0.1-0.2	SE272334.018	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH112_0.4-0.5	SE272334.019	LB326537	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH113M_0.1-0.2	SE272334.020	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
BH113M_0.6-0.7	SE272334.021	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
QD1_241010	SE272334.022	LB326538	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	23 Nov 2024	16 Oct 2024
TRH (Total Recoverable I	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR_241010	SE272334.023	LB326528	10 Oct 2024	10 Oct 2024	17 Oct 2024	14 Oct 2024	23 Nov 2024	17 Oct 2024

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE272334.001	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH102_0.2-0.3	SE272334.002	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH103_0.1-0.2	SE272334.003	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH104_0.1-0.2	SE272334.004	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH104_0.4-0.5	SE272334.005	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH105_0.2-0.3	SE272334.006	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH106_0.2-0.3	SE272334.007	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024

VOC's in Soil

Mothod: ME (ALD JENN/JANI422

Method: ME-(AU)-[ENV]AN433

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

VOC's in Soil (continued)

BH106_0.7-0.8 SEZ72334.008 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH107M_0.3-0.4 SEZ72334.009 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH107M_0.8-0.9 SEZ72334.010 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH108_0.2-0.3 SEZ72334.011 LB326545 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SEZ72334.012 LB326545 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_1.0-1.1 SEZ72334.013 LB326545 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.4-0.5 SEZ72334.015 LB326545 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.4-0.5 SEZ72334.016 LB326545 10 Oct 2024 24 Oct 2024 14 Oct 2024 2	VOC's in Soil (continued)							Method: I	ME-(AU)-[ENV]AN433
BH107M_0.3-0.4 SE272334.009 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH107M_0.8-0.9 SE272334.010 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SE272334.011 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SE272334.012 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SE272334.013 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_10.1.1 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.1-0.2 SE27234.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 16 Oct 2024 16 Oct 2024	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH107M_0.8-0.9 SE272334.010 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH108_0.2-0.3 SE272334.011 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SE272334.012 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SE272334.013 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH1109M_0.2-0.3 SE272334.013 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.4-0.5 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.4-0.7 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.4-0.7 SE272334.019 <	BH106_0.7-0.8	SE272334.008	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH108_0.2-0.3 SE272334.011 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_0.2-0.3 SE272334.012 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_1.0-1.1 SE272334.013 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.1-0.2 SE272334.014 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.4-0.5 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.4-0.5 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019	BH107M_0.3-0.4	SE272334.009	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH109_0.0.2-0.3 SE27234.012 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH1091.0-1.1 SE272334.013 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH1100.1-0.2 SE272334.014 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH1100.4-0.5 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH1100.4-0.5 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019 LB326546 10 Oct 2024	BH107M_0.8-0.9	SE272334.010	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH109M_1.0-1.1 SE272334.013 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH109M_1.0_1.0_2 SE272334.014 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.4-0.5 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0_0.4-0.5 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0_0.4-0.7 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0_0.4-0.5 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113_0_0.4-0.7 SE272334.020	BH108_0.2-0.3	SE272334.011	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH110_0.1-0.2 SE272334.014 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH110_0.4-0.5 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.1-0.2 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.1-0.2 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0.0-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0.0-0.2 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0.0-4-0.5 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 16 Oct 2024 BH11_0.0-6.0.7 SE272334.021 LB326546 10 Oct 2024 10 Oc	BH109M_0.2-0.3	SE272334.012	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH110_0.4-0.5 SE272334.015 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.1-0.2 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.1-0.2 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113_0.0-0.7 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326	BH109M_1.0-1.1	SE272334.013	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH111_0.1-0.2 SE272334.016 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH111_0.6-0.7 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113_0.1-0.2 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH13_0.0-6.0.7 SE272334.021 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.025 LB326546	BH110_0.1-0.2	SE272334.014	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH111_0.6-0.7 SE272334.017 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.1-0.2 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113_0_0.4-0.7 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.025 LB326546	BH110_0.4-0.5	SE272334.015	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH112_0.1-0.2 SE272334.018 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH112_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113M_0.1-0.2 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113M_0.6-0.7 SE272334.021 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546	BH111_0.1-0.2	SE272334.016	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH112_0.4-0.5 SE272334.019 LB326545 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113M_0.1-0.2 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113M_0.6-0.7 SE272334.021 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.024 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QCCs In Water Sample No. QC Ref Sample N	BH111_0.6-0.7	SE272334.017	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH113M_0.1-0.2 SE272334.020 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 BH113M_0.6-0.7 SE272334.021 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.024 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QCS In Water VE V	BH112_0.1-0.2	SE272334.018	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH113M_0.6-0.7 SE272334.021 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.024 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 16 Oct 2024 QCS In Water Verter Method: ME-(AU)-[ENV]AN44 Method: ME-(AU)-[ENV]AN44 Method: ME-(AU)-[ENV]AN44 Sample Name Sample No. QC Ref Sample Received Extraction Due Extracted Analysis Due Analysed	BH112_0.4-0.5	SE272334.019	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
QD1_241010 SE272334.022 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTS1 SE272334.024 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 OCs In Water Method: ME-(AU)-[ENV]AN44 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed	BH113M_0.1-0.2	SE272334.020	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
QTS1 SE272334.024 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 OCs In Water Method: ME-(AU)-[ENV]AN4: Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed	BH113M_0.6-0.7	SE272334.021	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
QTB1 SE272334.025 LB326546 10 Oct 2024 10 Oct 2024 24 Oct 2024 14 Oct 2024 24 Oct 2024 16 Oct 2024 OCs In Water Method: ME-(AU)-[ENV]AN4: Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed	QD1_241010	SE272334.022	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
OCs in Water Method: ME-(AU)-[ENV]AN4: Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed	QTS1	SE272334.024	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed	QTB1	SE272334.025	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
	VOCs in Water							Method: I	ME-(AU)-[ENV]AN433
QR_241010 SE272334.023 LB326770 10 Oct 2024 10 Oct 2024 24 Oct 2024 15 Oct 2024 24 Oct 2024 16 Oct 2024	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	QR_241010	SE272334.023	LB326770	10 Oct 2024	10 Oct 2024	24 Oct 2024	15 Oct 2024	24 Oct 2024	16 Oct 2024

Volatile Petroleum Hydrocarbons in Soil

Volatio Fou olouin Flyaroo							Moulou. I	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE272334.001	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH102_0.2-0.3	SE272334.002	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH103_0.1-0.2	SE272334.003	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH104_0.1-0.2	SE272334.004	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH104_0.4-0.5	SE272334.005	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH105_0.2-0.3	SE272334.006	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH106_0.2-0.3	SE272334.007	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH106_0.7-0.8	SE272334.008	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH107M_0.3-0.4	SE272334.009	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH107M_0.8-0.9	SE272334.010	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH108_0.2-0.3	SE272334.011	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH109M_0.2-0.3	SE272334.012	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH109M_1.0-1.1	SE272334.013	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH110_0.1-0.2	SE272334.014	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH110_0.4-0.5	SE272334.015	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH111_0.1-0.2	SE272334.016	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH111_0.6-0.7	SE272334.017	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH112_0.1-0.2	SE272334.018	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH112_0.4-0.5	SE272334.019	LB326545	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH113M_0.1-0.2	SE272334.020	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
BH113M_0.6-0.7	SE272334.021	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
QD1_241010	SE272334.022	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	16 Oct 2024
QTS1	SE272334.024	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	17 Oct 2024
QTB1	SE272334.025	LB326546	10 Oct 2024	10 Oct 2024	24 Oct 2024	14 Oct 2024	24 Oct 2024	17 Oct 2024
Volatile Petroleum Hydroc	arbons in Water						Method: M	/E-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR_241010	SE272334.023	LB326770	10 Oct 2024	10 Oct 2024	24 Oct 2024	15 Oct 2024	24 Oct 2024	16 Oct 2024

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: M	E-(AU)-[ENV]/
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	100
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	92
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	93
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	99
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	102
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	105
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	96
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	113
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	114
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	113
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	125
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	113
	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	94
P Pesticides in Soil					
					E-(AU)-[ENV]
arameter	Sample Name	Sample Number	Units	Criteria	Recover
-fluorobiphenyl (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	85
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	85
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	93
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	88
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	88
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	87
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	93
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	85
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	91
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	96
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	80
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	92
	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	95
14-p-terphenyl (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	96
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	96
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	101
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	97
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	97
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	95
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	106
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	95
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	101
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	106
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	92
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	100
	BH112_0.1 0.2	SE272334.020	%	60 - 130%	96
	Bittion_0.10.2	02272004.020	70		
H (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV
rameter	Sample Name	Sample Number	Units	Criteria	Recove
fluorobiphenyl (Surrogate)	BH101_0.1-0.2	SE272334.001	%	70 - 130%	85
	BH102_0.2-0.3	SE272334.002	%	70 - 130%	85
	BH103_0.1-0.2	SE272334.003	%	70 - 130%	93
	BH104_0.1-0.2	SE272334.004	%	70 - 130%	88
	BH104_0.4-0.5	SE272334.005	%	70 - 130%	86
	BH105_0.2-0.3	SE272334.006	%	70 - 130%	88
	BH106_0.2-0.3	SE272334.007	%	70 - 130%	87
	BH106_0.7-0.8	SE272334.008	%	70 - 130%	69 †
	BH107M_0.3-0.4	SE272334.009	%	70 - 130%	93
	BH107M_0.8-0.9	SE272334.010	%	70 - 130%	89
	BH108_0.2-0.3	SE272334.011	%	70 - 130%	85
	BH109M_0.2-0.3	SE272334.012	%	70 - 130%	91
	BH109M_1.0-1.1	SE272334.013	%	70 - 130%	92
	BH110_0.1-0.2	SE272334.014	%	70 - 130%	96
	BH110_0.4-0.5	SE272334.015	%	70 - 130%	102
	BH111_0.1-0.2	SE272334.015	%	70 - 130%	80
	DITIT_0.1-0.2	02212004.010	/0	10.10070	
	BH111_0.6-0.7	SE272334.017	%	70 - 130%	89

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Parameter Recovery % Sample Name Sample Numb Units Criteria 2-fluorobiphenvl (Surrogate) BH112 0.1-0.2 SE272334.018 % 70 - 130% 92 BH112_0.4-0.5 SE272334.019 70 - 130% 85 % BH113M_0.1-0.2 SE272334.020 95 % 70 - 130% BH113M 0.6-0.7 SE272334.021 % 70 - 130% 95 d14-p-terphenyl (Surrogate) SE272334.001 70 - 130% 96 BH101_0.1-0.2 % BH102 0.2-0.3 SE272334.002 70 - 130% % 96 BH103 0 1-0 2 SE272334 003 % 70 - 130% 101 SE272334.004 70 - 130% 97 BH104 0.1-0.2 % BH104_0.4-0.5 SE272334.005 70 - 130% 100 % BH105 0.2-0.3 SE272334.006 % 70 - 130% 97 SE272334.007 BH106_0.2-0.3 % 70 - 130% 95 BH106 0.7-0.8 SE272334.008 70 - 130% 83 % BH107M 0 3-0 4 SE272334 009 % 70 - 130% 106 BH107M 0.8-0.9 SE272334.010 % 70 - 130% 98 SE272334.011 BH108 0.2-0.3 % 70 - 130% 95 BH109M 0.2-0.3 SE272334.012 % 70 - 130% 101 BH109M_1.0-1.1 SE272334.013 70 - 130% 105 % BH110_0.1-0.2 SE272334.014 70 - 130% 106 % BH110 0.4-0.5 SE272334.015 % 70 - 130% 113 SE272334.016 70 - 130% 92 BH111_0.1-0.2 % BH111 0.6-0.7 SE272334.017 70 - 130% 101 % BH112 0 1-0 2 SE272334 018 % 70 - 130% 100 SE272334.019 70 - 130% 98 BH112 0.4-0.5 % BH113M_0.1-0.2 SE272334.020 % 70 - 130% 96 BH113M 0.6-0.7 SE272334.021 70 - 130% 95 % d5-nitrobenzene (Surrogate) BH101_0.1-0.2 SE272334.001 % 70 - 130% 86 BH102 0.2-0.3 SE272334.002 70 - 130% % 88 BH103 0.1-0.2 SE272334 003 % 70 - 130% 92 BH104_0.1-0.2 SE272334.004 % 70 - 130% 89 BH104 0.4-0.5 SE272334.005 % 70 - 130% 88 BH105 0.2-0.3 SE272334.006 70 - 130% 89 % BH106_0.2-0.3 SE272334.007 % 70 - 130% 87 BH106_0.7-0.8 SE272334.008 71 % 70 - 130% BH107M 0.3-0.4 SE272334.009 % 70 - 130% 92 BH107M_0.8-0.9 SE272334.010 70 - 130% % 91 SE272334.011 BH108 0.2-0.3 % 70 - 130% 83 BH109M 0 2-0 3 SE272334 012 % 70 - 130% 89 BH109M_1.0-1.1 SE272334.013 % 70 - 130% 93 BH110_0.1-0.2 SE272334.014 70 - 130% 97 % BH110 0.4-0.5 SE272334.015 % 70 - 130% 103 BH111_0.1-0.2 SE272334.016 % 70 - 130% 80 BH111 0.6-0.7 SE272334.017 % 70 - 130% 91 BH112 0.1-0.2 SE272334 018 70 - 130% 92 % BH112_0.4-0.5 SE272334.019 % 70 - 130% 91 SE272334.020 BH113M 0.1-0.2 70 - 130% 100 % BH113M 0.6-0.7 SE272334.021 70 - 130% 101 % PCBs in Soi Method: ME-(AU)-[ENV]AN420 Recovery % Sample Name Sample Numb Units Criteria Parameter TCMX (Surrogate) BH101 0.1-0.2 SE272334.001 % 60 - 130% 98 BH102_0.2-0.3 SE272334.002 60 - 130% 90 % SE272334.003 BH103_0.1-0.2 % 60 - 130% 91 BH104 0.1-0.2 SE272334.004 % 60 - 130% 97 BH105_0.2-0.3 SE272334.006 % 60 - 130% 99 BH106 0.2-0.3 SE272334.007 % 60 - 130% 102 BH107M 0.3-0.4 SE272334.009 % 60 - 130% 93 BH108_0.2-0.3 SE272334.011 % 60 - 130% 111 BH109M 0.2-0.3 SE272334.012 60 - 130% 112 %

BH110 0.1-0.2

BH111_0.1-0.2

BH112_0.1-0.2

SE272334.014

SE272334.016

SE272334.018

%

%

%

60 - 130%

60 - 130%

60 - 130%

111

123

110

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (continued)				Method: ME	-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
TCMX (Surrogate)	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	91
VOC's in Soil				Method: ME	-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	88
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	84
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	88
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	76
	BH104_0.4-0.5	SE272334.005	%	60 - 130%	86
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	85
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	95
	BH106_0.7-0.8	SE272334.008	%	60 - 130%	82
	BH107M_0.3-0.4 BH107M_0.8-0.9	SE272334.009	%	60 - 130%	81
	BH107M_0.8-0.9 BH108_0.2-0.3	SE272334.010 SE272334.011	%	60 - 130% 60 - 130%	75
	BH109M_0.2-0.3	SE272334.011	%	60 - 130%	86
	BH109M_1.0-1.1	SE272334.013	%	60 - 130%	88
	BH110_0.1-0.2	SE272334.013	%	60 - 130%	87
	BH110_0.4-0.5	SE272334.015	%	60 - 130%	89
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	89
	BH111_0.6-0.7	SE272334.017	%	60 - 130%	83
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	96
	BH112_0.4-0.5	SE272334.019	%	60 - 130%	90
	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	101
	BH113M_0.6-0.7	SE272334.021	%	60 - 130%	100
	QD1_241010	SE272334.022	%	60 - 130%	85
	QTS1	SE272334.024	%	60 - 130%	94
	QTB1	SE272334.025	%	60 - 130%	88
d4-1,2-dichloroethane (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	89
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	85
	BH103_0.1-0.2	SE272334.003 SE272334.004	%	60 - 130%	98
	BH104_0.1-0.2 BH104_0.4-0.5	SE272334.004 SE272334.005	%	60 - 130% 60 - 130%	70 97
	BH104_0.4-0.3 BH105_0.2-0.3	SE272334.005	%	60 - 130%	74
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	100
	BH106_0.7-0.8	SE272334.008	%	60 - 130%	87
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	89
	BH107M_0.8-0.9	SE272334.010	%	60 - 130%	86
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	90
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	94
	BH109M_1.0-1.1	SE272334.013	%	60 - 130%	103
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	92
	BH110_0.4-0.5	SE272334.015	%	60 - 130%	92
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	90
	BH111_0.6-0.7	SE272334.017	%	60 - 130%	90
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	99
	BH112_0.4-0.5	SE272334.019	%	60 - 130%	102
	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	106
	BH113M_0.6-0.7	SE272334.021	%	60 - 130% 60 - 130%	105
	QD1_241010 QTS1	SE272334.022 SE272334.024	%	60 - 130%	74 93
	QTB1	SE272334.024	%	60 - 130%	81
d8-toluene (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	92
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	87
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	103
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	76
	BH104_0.4-0.5	SE272334.005	%	60 - 130%	101
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	81
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	109
	BH106_0.7-0.8	SE272334.008	%	60 - 130%	94
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	80

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH107M_0.8-0.9	SE272334.010	%	60 - 130%	81
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	96
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	91
	BH109M_1.0-1.1	SE272334.013	%	60 - 130%	97
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	95
	BH110_0.4-0.5	SE272334.015	%	60 - 130%	100
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	96
	BH111_0.6-0.7	SE272334.017	%	60 - 130%	98
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	107
	BH112_0.4-0.5	SE272334.019	%	60 - 130%	109
	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	104
	BH113M_0.6-0.7	SE272334.021	%	60 - 130%	101
	QD1_241010	SE272334.022	%	60 - 130%	79
	QTS1	SE272334.024	%	60 - 130%	100
	QTB1	SE272334.025	%	60 - 130%	89
VOCs in Water				Method: ME	-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
					-
Bromofluorobenzene (Surrogate)	QR_241010	SE272334.023	%	40 - 130% 40 - 130%	91
d4-1,2-dichloroethane (Surrogate)	QR_241010	SE272334.023	%		77
d8-toluene (Surrogate)	QR_241010	SE272334.023	%	40 - 130%	91
Volatile Petroleum Hydrocarbons in Soil				Method: ME	-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	88
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	84
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	88
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	76
	BH104_0.4-0.5	SE272334.005	%	60 - 130%	86
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	85
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	95
	BH106_0.7-0.8	SE272334.008	%	60 - 130%	82
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	81
	BH107M_0.8-0.9	SE272334.010	%	60 - 130%	75
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	82
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	86
	BH109M_1.0-1.1	SE272334.013	%	60 - 130%	88
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	87
	BH110_0.4-0.5	SE272334.015	%	60 - 130%	89
	BH111_0.1-0.2	SE272334.016	%	60 - 130%	89
	BH111_0.6-0.7	SE272334.017	%	60 - 130%	83
	BH112_0.1-0.2	SE272334.018	%	60 - 130%	96
	BH112_0.4-0.5	SE272334.019	%	60 - 130%	90
	BH113M_0.1-0.2	SE272334.020	%	60 - 130%	101
	BH113M_0.6-0.7	SE272334.021	%	60 - 130%	100
	QD1_241010	SE272334.022	%	60 - 130%	85
d4-1,2-dichloroethane (Surrogate)	BH101_0.1-0.2	SE272334.001	%	60 - 130%	89
	BH102_0.2-0.3	SE272334.002	%	60 - 130%	85
	BH103_0.1-0.2	SE272334.003	%	60 - 130%	98
	BH104_0.1-0.2	SE272334.004	%	60 - 130%	70
	BH104_0.4-0.5	SE272334.005	%	60 - 130%	97
	BH105_0.2-0.3	SE272334.006	%	60 - 130%	74
	BH106_0.2-0.3	SE272334.007	%	60 - 130%	100
	BH106_0.7-0.8	SE272334.008	%	60 - 130%	87
	BH107M_0.3-0.4	SE272334.009	%	60 - 130%	89
	BH107M_0.8-0.9	SE272334.010	%	60 - 130%	86
	BH108_0.2-0.3	SE272334.011	%	60 - 130%	90
	BH109M_0.2-0.3	SE272334.012	%	60 - 130%	94
	BH109M_1.0-1.1	SE272334.013	%	60 - 130%	103
	BH110_0.1-0.2	SE272334.014	%	60 - 130%	92
	BH110_0.4-0.5	SE272334.015	%	60 - 130%	92

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Parameter Sample Number Criteria Recovery % Sample Name Units d4-1.2-dichloroethane (Surrogate) BH111 0.6-0.7 SE272334.017 % 60 - 130% 90 BH112_0.1-0.2 SE272334.018 % 60 - 130% 99 BH112_0.4-0.5 SE272334.019 % 60 - 130% 102 BH113M 0.1-0.2 SE272334.020 % 60 - 130% 106 BH113M_0.6-0.7 SE272334.021 % 60 - 130% 105 QD1_241010 SE272334.022 60 - 130% 74 % d8-toluene (Surrogate) BH101 0 1-0 2 SE272334 001 % 60 - 130% 92 BH102_0.2-0.3 SE272334.002 60 - 130% 87 % SE272334.003 103 BH103_0.1-0.2 % 60 - 130% BH104 0.1-0.2 SE272334.004 % 60 - 130% 76 BH104_0.4-0.5 SE272334.005 60 - 130% 101 % BH105 0.2-0.3 SE272334.006 % 60 - 130% 81 BH106 0 2-0 3 SE272334 007 % 60 - 130% 109 BH106_0.7-0.8 SE272334.008 60 - 130% 94 % BH107M 0.3-0.4 SE272334.009 % 60 - 130% 80 BH107M 0.8-0.9 SE272334.010 % 60 - 130% 81 BH108_0.2-0.3 SE272334.011 % 60 - 130% 96 BH109M_0.2-0.3 SE272334.012 % 60 - 130% 91 BH109M 1.0-1.1 SE272334.013 % 60 - 130% 97 BH110_0.1-0.2 SE272334.014 % 60 - 130% 95 BH110_0.4-0.5 SE272334.015 100 % 60 - 130% BH111 0 1-0 2 SE272334 016 % 60 - 130% 96 BH111_0.6-0.7 SE272334.017 60 - 130% 98 % BH112_0.1-0.2 SE272334.018 60 - 130% 107 % BH112 0.4-0.5 SE272334.019 % 60 - 130% 109 60 - 130% BH113M_0.1-0.2 SE272334.020 % 104 BH113M 0.6-0.7 SE272334.021 % 60 - 130% 101 QD1 241010 SE272334.022 % 60 - 130% 79 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-IENVIAN433 Recovery % Parameter Sample Name Sample Numb Units Criteria Bromofluorobenzene (Surrogate) QR 241010 SE272334.023 % 40 - 130% 91 d4-1,2-dichloroethane (Surrogate) QR_241010 SE272334.023 % 60 - 130% 77 SE272334.023 d8-toluene (Surrogate) QR_241010 % 40 - 130% 91

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB326532.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			м	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB326566.001	Mercury	mg/kg	0.05	<0.05
LB326567.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

ample Number	Parameter	Units	LOR	Result
3326537.001	Alpha BHC	mg/kg	0.1	<0.1
020001.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)		0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
		mg/kg		
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	96
326538.001	Alpha BHC	mg/kg	0.1	<0.1
	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin		0.1	<0.1
	Isodrin	mg/kg mg/kg	0.1	<0.1
	Heptachlor epoxide		0.1	<0.1
		mg/kg		
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDE	mg/kg	0.1	<0.1
		mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	_	84

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420 Sample Number Result Parameter Units LOR LB326537.001 Azinphos-methyl (Guthion) 0.2 <0.2 mg/kg Bromophos Ethyl mg/kg 0.2 < 0.2 Chlorpyrifos (Chlorpyrifos Ethyl) 0.2 <0.2 mg/kg Diazinon (Dimpylate) 0.5 <0.5 mg/kg Dichlorvos mg/kg 0.5 <0.5 Dimethoate mg/kg 0.5 <0.5 <0.2 Ethion 0.2 ma/ka Fenitrothion mg/kg 0.2 < 0.2 Malathion 0.2 <0.2 mg/kg Methidathion 0.5 <0.5 mg/kg Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Surrogates 2-fluorobiphenyl (Surrogate) % 94 d14-p-terphenyl (Surrogate) % 110 LB326538.001 Azinphos-methyl (Guthion) mg/kg 0.2 < 0.2 0.2 <0.2 Bromophos Ethyl mg/kg Chlorpyrifos (Chlorpyrifos Ethyl) 0.2 <0.2 mg/kg Diazinon (Dimpylate) mg/kg 0.5 < 0.5 Dichlorvos 0.5 <0.5 mg/kg Dimethoate 0.5 <0.5 mg/kg Ethion mg/kg 02 <0.2 Fenitrothion 0.2 <0.2 mg/kg Malathion 0.2 <0.2 ma/ka Methidathion mg/kg 0.5 < 0.5 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 Surrogates 2-fluorobiphenyl (Surrogate) 94 % d14-p-terphenyl (Surrogate) % 93 PAH (Polynuclear Aromatic Hydrocarbons) in Soll Method: ME-(AU)-[ENV]AN420 Sample Number Parameter Result LB326537.001 Naphthalene mg/kg 0.1 < 0.1 2-methylnaphthalene mg/kg 0.1 <0.1 1-methylnaphthalene 0.1 <0.1 mg/kg Acenaphthylene mg/kg 0.1 < 0.1 Acenaphthene 0.1 <0.1 mg/kg Fluorene <0.1 0.1 mg/kg Phenanthrene mg/kg 0.1 < 0.1 Anthracene 0.1 <0.1 mg/kg Fluoranthene 0.1 <0.1 mg/kg 0.1 <0.1 Pyrene mg/kg mg/kg Benzo(a)anthracene 0.1 <0.1 Chrysene 0.1 <0.1 mg/kg 0.1 < 0.1 Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg Dibenzo(ah)anthracene 0.1 <0.1 mg/kg Benzo(ghi)perylene mg/kg 0.1 < 0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) 96 % 2-fluorobiphenyl (Surrogate) % 94 d14-p-terphenyl (Surrogate) % 110 LB326538.001 Naphthalene <0.1 0.1 mg/kg 2-methylnaphthalene mg/kg 0.1 < 0.1 0.1 <0.1 1-methylnaphthalene mg/kg Acenaphthylene <0.1 0.1 mg/kg Acenaphthene mg/kg 0.1 < 0.1 Fluorene mg/kg 0.1 <0.1 Phenanthrene 0.1 <0.1 mg/kg < 0.1 Anthracene mg/kg 0.1 mg/kg Fluoranthene 0.1 <0.1 Pyrene 0.1 <0.1 mg/kg Benzo(a)anthracene mg/kg 0.1 < 0.1 Chrysene mg/kg 0.1 <0.1

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB326538.001	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	96
	2-fluorobiphenyl (Surrogate)	%	-	94
	d14-p-terphenyl (Surrogate)	%	-	93

PCBs in Soil

PCBs in Soil				Meth	od: ME-(AU)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result
LB326537.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	TCMX (Surrogate)	%	-	93
LB326538.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	TCMX (Surrogate)	%	-	81
Total Phenolics in Soil				Meth	od: ME-(AU)-[ENV]AN29

Sample Number	Parameter	Units	LOR	Result
LB326731.001	Total Phenols	mg/kg	0.5	<0.5

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

tal Recoverable Elements in Soli/Waste Solids/Materials by ICPOES		Method: ME-(AU)-[ENV]AN040/AN3		
Sample Number	Parameter	Units	LOR	Result
LB326559.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0
LB326560.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0
Trace Metals (Dissolved) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN3
Sample Number	Parameter	Units	LOR	Result
1 0000350 004				

Sample Number	Parameter	Units	LOR	Result
LB326753.001	Arsenic	µg/L	1	<1
	Cadmium	µg/L	0.1	<0.1
	Chromium	µg/L	1	<1
	Copper	μg/L	1	<1

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Dissolved) in Water by ICPMS (continued) Method: ME-(AU)-[ENV]AN318 <u>Uni</u>ts LOR Result Sample Number Paran LB326753.001 Lead µg/L 1 <1 Nickel µg/L 1 <1 Zinc 5 <5 µg/L TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Result Sample Number Parameter Units LOR LB326537.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg LB326538.001 TRH C10-C14 20 mg/kg <20 mg/kg TRH C15-C28 45 <45 TRH C29-C36 <45 45 mg/kg TRH C37-C40 <100 mg/kg 100 TRH C10-C36 Total mg/kg 110 <110 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Sample Number Parameter Units LOR Result LB326528.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Numb Units Result Parameter LB326545.001 Fumigants 2.2-dichloropropane ma/ka 0.1 < 0.1 1,2-dichloropropane mg/kg 0.1 < 0.1 cis-1,3-dichloropropene mg/kg 0.1 <0.1 <0.1 trans-1,3-dichloropropene mg/kg 0.1 1,2-dibromoethane (EDB) mg/kg 0.1 <0.1 Halogenated Aliphatics Dichlorodifluoromethane (CFC-12) <1 1 mg/kg Chloromethane mg/kg 1 <1 Vinyl chloride (Chloroethene) 0.1 <0.1 mg/kg Bromomethane mg/kg <1 Chloroethane <1 ma/ka 1 Trichlorofluoromethane mg/kg 1 <1 1,1-dichloroethene 0.1 <0.1 mg/kg Iodomethane mg/kg 5 <5 Dichloromethane (Methylene chloride) mg/kg 0.5 < 0.5 <0.1 Allyl chloride 0.1 mg/kg trans-1.2-dichloroethene <0.1 ma/ka 0.1 1,1-dichloroethane mg/kg 0.1 < 0.1 cis-1,2-dichloroethene 0.1 <0.1 mg/kg Bromochloromethane mg/kg 0.1 <0.1 1,2-dichloroethane mg/kg 0.1 <0.1 1,1,1-trichloroethane 0.1 <0.1 mg/kg 1.1-dichloropropene mg/kg 0.1 < 0.1 Carbon tetrachloride mg/kg 0.1 <0.1 Dibromomethane 0.1 <0.1 mg/kg Trichloroethene (Trichloroethylene, TCE) ma/ka 0.1 <0.1 1,1,2-trichloroethane mg/kg 0.1 <0.1 1,3-dichloropropane 0.1 <0.1 mg/kg Tetrachloroethene (Perchloroethylene,PCE) <0.1 mg/kg 0.1 1,1,1,2-tetrachloroethane mg/kg 0.1 < 0.1 1,1,2,2-tetrachloroethane 0.1 <0.1 mg/kg 1.2.3-trichloropropane mg/kg 0.1 < 0.1 mg/kg trans-1,4-dichloro-2-butene <1 1 1,2-dibromo-3-chloropropane 0.1 <0.1 mg/kg <0.1 Hexachlorobutadiene mg/kg 0.1 mg/kg Halogenated Aromatics Chlorobenzene 0.1 <0.1 Bromobenzene 0.1 <0.1 mg/kg

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

amula Number	əd)	Devenueter	11		od: ME-(AU)-[ENV]
ample Number		Parameter	Units	LOR	Result
3326545.001	Halogenated Aromatics	2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	Tydiocarbons				
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		o-xylene	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene		0.1	<0.1
			mg/kg		
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
	, , , , , , , , , , , , , , , , , , ,	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
				10	<10
		Vinyl acetate*	mg/kg		
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	105
	, and the second s	d8-toluene (Surrogate)	%	-	111
		Bromofluorobenzene (Surrogate)	%	-	102
	Totals	Total Other Chlorinated Hydrocarbons VIC EPA*		1.8	<1.8
	Totals		mg/kg		
		Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total BTEX*	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform (THM)	mg/kg	0.1	<0.1
		Bromodichloromethane (THM)	mg/kg	0.1	<0.1
		Dibromochloromethane (THM)	mg/kg	0.1	<0.1
		Bromoform (THM)	mg/kg	0.1	<0.1
326546.001	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1
20040.001	T unigants			0.1	
		1,2-dichloropropane	mg/kg		<0.1
		cis-1,3-dichloropropene	mg/kg	0.1	<0.1
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
					<1
		Chloroethane	mg/kg	1	
		Trichlorofluoromethane	mg/kg	1	<1
		1,1-dichloroethene	mg/kg	0.1	<0.1
		Iodomethane	mg/kg	5	<5
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
		Allyl chloride	mg/kg	0.1	<0.1
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane	mg/kg	0.1	<0.1
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

DC's in Soil (continue		Personator			od: ME-(AU)-[ENV]
ample Number		Parameter	Units	LOR	Result
326546.001	Halogenated Aliphatics	1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
	halogenated Aromatics	Bromobenzene		0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
			mg/kg		
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		o-xylene	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)		0.1	<0.1
			mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg		
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate*	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene (VOC)*		0.1	<0.1
		Carbon disulfide	mg/kg	0.5	<0.1
	Sulphonated		mg/kg		
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	95
	Totals	Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total BTEX*	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform (THM)	mg/kg	0.1	<0.1
		Bromodichloromethane (THM)	mg/kg	0.1	<0.1
		Dibromochloromethane (THM)	mg/kg	0.1	<0.1
					-0.4
		Bromoform (THM)	nig/kg	0.1	<0.1
a in Water		Bromotorm (THM)	mg/kg		
				Meth	od: ME-(AU)-[ENV]
s in Water nple Number 26770.001	Monocyclic Aromatic	Bromotorm (THM) Parameter Benzene	Units µg/L		<0.1 nod: ME-(AU)-[ENV] Result <0.5

Toluene

Ethylbenzene

Hydrocarbons

<0.5

<0.5

0.5

0.5

µg/L

µg/L

SE272334 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

OCs in Water (continued) Method: ME-(AU)-[ENV]AN433					
Sample Number		Parameter	Units	LOR	Result
LB326770.001	Monocyclic Aromatic	m/p-xylene	μg/L	1	<1
	Hydrocarbons	o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene (VOC)*	μg/L	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88
		d8-toluene (Surrogate)	%	-	102
		Bromofluorobenzene (Surrogate)	%	-	84
/olatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB326545.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	105
LB326546.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88
/olatile Petroleum Hy	drocarbons in Water			Metho	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB326770.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88
		d8-toluene (Surrogate)	%	-	102
		Bromofluorobenzene (Surrogate)	%	-	84

17/10/2024

Page 19 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Aercury in Soil	Duplicate		Daramotor	Units	LOR	Original	Duplicato	Critoria %	ENVAN
Original	Duplicate		Parameter			Original	Duplicate		
SE272334.010	LB326566.014		Mercury	mg/kg	0.05	< 0.05	<0.05	200	0
SE272334.019	LB326566.024		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE272334.022	LB326567.023		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE272387.010	LB326567.014		Mercury	mg/kg	0.05	0.037631069	10.0874780010	110	55
loisture Content							Metho	d: ME-(AU)	-[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE272334.010	LB326552.011		% Moisture	%w/w	1	23.1	17.7	35	27
SE272334.019	LB326552.021		% Moisture	%w/w	1	19.0	16.8	36	12
SE272334.022	LB326553.021		% Moisture	%w/w	1	10.0	9.0	41	11
SE272387.010	LB326553.011		% Moisture	%w/w	1	2.428571428	53.7837837837	62	44
C Pesticides in S	oil						Metho	d: ME-(AU)	
	Duplicate		Parameter	Units	LOR	Original	Duplicate		
Driginal SE272334.011	LB326537.026		Alpha BHC	mg/kg	0.1	<0.1	0 0	200	RPD 0
5272334.011	LB320337.020						0		0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1		200	
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	C
			o,p'-DDE*	mg/kg	0.1	<0.1	0	200	(
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	C
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	C
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	C
			o,p'-DDD*	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	0	200	C
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	C
			o,p'-DDT*	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endrin ketone	mg/kg	0.1	<0.1	0	200	
			Methoxychlor	mg/kg	0.1	<0.1	0	200	
			Mirex		0.1	<0.1	0	200	
				mg/kg					
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	C
			Total OC VIC EPA	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.15	30	12
E272334.020	LB326538.025		Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	0	200	C
			Delta BHC	mg/kg	0.1	<0.1	0	200	C
			Heptachlor	mg/kg	0.1	<0.1	0	200	C
			Aldrin	mg/kg	0.1	<0.1	0	200	C
			Isodrin	mg/kg	0.1	<0.1	0	200	C
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	(
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	C
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	(
			o,p'-DDE*	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	C
			Dieldrin	mg/kg	0.1	<0.1	0	200	0
			Endrin		0.2	<0.2	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD*	mg/kg mg/kg			0	200	0
					0.1	<0.1			

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OC Pesticides in Soil (continued)

	coil (continued)		Devemator	11-24	LOP	Ortivity			-[ENV]AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
E272334.020	LB326538.025		p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT*	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endrin ketone	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
			Total OC VIC EPA	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.1488472272	30	6
E272387.010	LB326538.014		Alpha BHC	mg/kg	0.1	0	0	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Lindane (gamma BHC)	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			o,p'-DDE*	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			Beta Endosulfan		0.2	0	0	200	0
				mg/kg		0			C
			o,p'-DDD*	mg/kg	0.1		0	200	
			p,p'-DDD	mg/kg	0.1	0	0	200	0
			Endrin aldehyde	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	C
			o,p'-DDT*	mg/kg	0.1	0	0	200	C
			p,p'-DDT	mg/kg	0.1	0	0	200	C
			Endrin ketone	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	C
			Mirex	mg/kg	0.1	0	0	200	C
			trans-Nonachlor	mg/kg	0.1	0	0	200	C
			Total CLP OC Pesticides	mg/kg	1	0	0	200	C
			Total OC VIC EPA	mg/kg	1	0	0	200	C
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.160759751	10.1623900050	30	1
Pesticides in S	oll						Metho	d: ME-(AU)-	-IENVIA
iginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		
						-			RPL 0
272334.011	LB326537.026		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.0092684534	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	C
			Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0.0008623131	200	C
			Ethion	mg/kg	0.2	<0.2	0.0032183094	200	C
			Fenitrothion	mg/kg	0.2	<0.2	0.0002783743	200	0
			Malathion	mg/kg	0.2	<0.2	0.0051193038	200	0
			Methidathion	mg/kg	0.5	<0.5	0.0033787493	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.0003392523	200	C
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	C
		0	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4508758151	30	6
		Surrogates	z-indotobiphenyi (Sunogate)	inging		0.4	0.1000100101		
		Surrogates	d14-p-terphenyl (Surrogate)		-	0.5	0.5102609750	30	7
272334.018	LB326537.027	Surrogates		mg/kg mg/kg					

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OP Pesticides in Soil (continued) Method: ME-(AU)-IENVIAN420 Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR LB326537.027 SE272334.018 0.0207921114 Chlorpyrifos (Chlorpyrifos Ethyl) 200 0.2 <0.2 mg/kg 0 Diazinon (Dimpylate) mg/kg 0.5 < 0.5 0 200 0 Dichlorvos 0.5 <0.5 0 200 0 mg/kg Dimethoate 0.5 <0.5 0.0023665639 200 0 mg/kg Ethion 02 <0.2 0 200 0 mg/kg Fenitrothion 0.2 <0.2 0.0006409324 200 0 mg/kg 0.0089494344 Malathion 0.2 <0.2 200 0 ma/ka Methidathion 0.5 < 0.5 0.0017970689 200 0 mg/kg 0.2 <0.2 200 0 Parathion-ethyl (Parathion) 0 mg/kg Total OP Pesticides* 1.7 <1.7 0 200 0 mg/kg Surrogates 2-fluorobiphenyl (Surrogate) 0.5 0.4467201684 30 3 mg/kg d14-p-terphenyl (Surrogate) 0.5 0.5195264556 30 4 mg/kg SE272334.020 LB326538.025 0.2 Azinphos-methyl (Guthion) < 0.2 200 0 ma/ka 0 Bromophos Ethyl 0.2 < 0.2 0 200 0 mg/kg 0.2 <0.2 0.0084780678 Chlorpyrifos (Chlorpyrifos Ethyl) 200 0 mg/kg Diazinon (Dimpylate) 0.5 <0.5 0 200 0 mg/kg Dichlorvos mg/kg 0.5 < 0.5 0 200 0 0.5 <0.5 0.0023495975 Dimethoate mg/kg 200 0 Ethion 0.2 <0.2 0 200 0 mg/kg Fenitrothion 02 <0.2 0 0009178634 200 0 mg/kg Malathion 0.2 <0.2 0.0043558125 0 200 mg/kg Methidathion 0.5 <0.5 0.0007483209 200 0 ma/ka Parathion-ethyl (Parathion) 0.2 < 0.2 0 200 0 mg/kg Total OP Pesticides 1.7 <1.7 0 200 0 mg/kg Surrogates 0.4653112161 2-fluorobiphenyl (Surrogate) 0.5 mg/kg 30 3 d14-p-terphenyl (Surrogate) mg/kg 0.5 0 4660736408 30 3 SE272387.010 LB326538.014 0.0003953680 Azinphos-methyl (Guthion) 0.2 0 200 0 mg/kg Bromophos Ethyl 0.2 200 mg/kg 0 0 0 Chlorpyrifos (Chlorpyrifos Ethyl) 0.2 0 0 200 0 mg/kg 0.0081574569 Diazinon (Dimpylate) 0.5 0 200 0 mg/kg Dichlorvos mg/kg 0.5 0 0 200 0 Dimethoate mg/kg 0.5 0 0.0055718291 200 0 0.2 0 Ethion 0 0 200 mg/kg 0.0002590778 Fenitrothion mg/kg 0.2 0 200 0 Malathion 02 0 0 0192493202 200 0 mg/kg 0.5 0.00134508090.0017044996 Methidathion 200 0 mg/kg Parathion-ethyl (Parathion) 200 0 ma/ka 0.2 0 0 Total OP Pesticides mg/kg 1.7 0 0 200 0 Surrogates 0.45987942050.4711524283 2-fluorobiphenyl (Surrogate) 30 2 mg/kg d14-p-terphenyl (Surrogate) mg/kg 0.46645728110.4801220994 30 3 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272334.011	LB326537.026	Naphthalene	mg/kg	0.1	<0.1	0.0010123673	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	0.0008645520	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	0.0010476215	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
		Acenaphthene	mg/kg	0.1	<0.1	0.0002821617	200	0
		Fluorene	mg/kg	0.1	<0.1	0	200	0
		Phenanthrene	mg/kg	0.1	<0.1	0.0108056471	200	0
		Anthracene	mg/kg	0.1	<0.1	0.0017744235	200	0
		Fluoranthene	mg/kg	0.1	<0.1	0.0078161452	200	0
		Pyrene	mg/kg	0.1	<0.1	0.0112525812	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	0.0055559588	200	0
		Chrysene	mg/kg	0.1	<0.1	0.0074308869	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.0085076955	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.0074328962	200	0
		Benzo(a)pyrene	mg/kg	0.1	<0.1	0.0055466666	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.0022781451	200	0
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.0008098295	200	0
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.0056408549	200	0

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD %
SE272334.011	LB326537.026		Carcinogenic PAHs, BaP TEQ <lor=0*< th=""><th>mg/kg</th><th>0.2</th><th><0.2</th><th>0</th><th>200</th><th>0</th></lor=0*<>	mg/kg	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	0.242	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4557945123	30	9
		Ū.	2-fluorobiphenyl (Surrogate)	mg/kg	- -	0.4	0.4508758151	30	6
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5102609750	30	7
SE272334.018	LB326537.027		Naphthalene	mg/kg	0.1	<0.1	0.0117490718	200	0
52272334.010	LD320337.027		· ·						0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0.0762672017	159	
			1-methylnaphthalene	mg/kg	0.1	<0.1	0.0714135535	167	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.0015656769	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0.0024796156	200	0
			Fluorene	mg/kg	0.1	<0.1	0.0100263049	200	0
			Phenanthrene	mg/kg	0.1	0.1	0.1000349373	122	16
			Anthracene	mg/kg	0.1	<0.1	0.0044547655	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.0132019185	200	0
			Pyrene	mg/kg	0.1	<0.1	0.0153717672	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.0325644128	200	0
			Chrysene	mg/kg	0.1	<0.1	0.0445226670	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.0320224826	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.0029605954	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.0023003334	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.0035855559	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.0025681294	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.0137556851	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	0.242	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	0.1000349373	122	16
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4548432699	30	1
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4467201684	30	3
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5195264556	30	4
SE272334.020	LB326538.025		Naphthalene	mg/kg	0.1	<0.1	0.0206852989	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0.0544126486	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0.0583844192	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.0117155493	200	0
					0.1	<0.1	0.0040411864	200	0
			Acenaphthene	mg/kg					
			Fluorene	mg/kg	0.1	<0.1	0.0088630641	200	0
			Phenanthrene	mg/kg	0.1	0.1	0.1231653607	112	3
			Anthracene	mg/kg	0.1	<0.1	0.0097733962	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.0360646916	200	0
			Pyrene	mg/kg	0.1	<0.1	0.0500514307	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.0075787749	200	0
			Chrysene	mg/kg	0.1	<0.1	0.0437585843	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.0518826861	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.0038502451	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.0125522311	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.0116341260	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.0054364274	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.0283896261	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	0.242	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	0.1231653607	112	3
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4857576201	30	3
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4653112161	30	3
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.4660736408	30	3
SE272387.010	LB326538.014		Naphthalene	mg/kg	0.1	0.05177008	000.0723587504	191	0
			2-methylnaphthalene	mg/kg	0.1		570.0425998664	200	0
			1-methylnaphthalene	mg/kg	0.1		610.0497239944	197	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil (continu	ied)				Metho	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272387.010	LB326538.014		Acenaphthene	mg/kg	0.1	0.035809806	10.0240982779	200	0
			Fluorene	mg/kg	0.1	0.149184512	50.1158075054	105	25
			Phenanthrene	mg/kg	0.1	1.491320356	1.7560070693	36	16
			Anthracene	mg/kg	0.1	0.374731333	0.4317308707	55	14
			Fluoranthene	mg/kg	0.1	2.037825040	3.1201978714	34	42 ②
			Pyrene	mg/kg	0.1	1.799146293	32.7572824695	34	42 ②
			Benzo(a)anthracene	mg/kg	0.1	0.883706425	31.2972102288	39	38
			Chrysene	mg/kg	0.1	0.893256960	1.2847583744	39	36
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.109402605	51.5494732069	38	33
			Benzo(k)fluoranthene	mg/kg	0.1	0.4303791228	30.6218545902	49	36
			Benzo(a)pyrene	mg/kg	0.1	1.006918135	31.4496779034	38	36
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.623257214	30.8708180052	43	33
			Dibenzo(ah)anthracene	mg/kg	0.1	0.1289888419	0.1734392521	96	29
			Benzo(ghi)perylene	mg/kg	0.1	0.588548500	0.8585997745	44	37
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>1.455399569</td><td>12.0784863401</td><td>21</td><td>35 ②</td></lor=0*<>	mg/kg	0.2	1.455399569	12.0784863401	21	35 ②
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>1.455399569</td><td>12.0784863401</td><td>21</td><td>35 ②</td></lor=lor>	mg/kg	0.2	1.455399569	12.0784863401	21	35 ②
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>1.455399569</td><td>12.0784863401</td><td>27</td><td>35 ②</td></lor=lor*<>	mg/kg	0.3	1.455399569	12.0784863401	27	35 ②
			Total PAH (18)	mg/kg	0.8	11.806175401	06.5604481875	31	34 ②
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.468238058	20.4885077052	30	4
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.459879420	50.4711524283	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.466457281	10.4801220994	30	3
PCBs in Soil							Metho	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272334.011	LB326537.028		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0

Uligiliai	Duplicate		Falalletei	Units	LOK	Unginai	Duplicate C		
SE272334.011	LB326537.028		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0.1457517505	30	13
SE272334.018	LB326537.029		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0.1689524972	30	2
SE272334.020	LB326538.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0.1448990610	30	6
SE272387.010	LB326538.014		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0

Method: ME-(ALI)-IENVIAN420

200

200

0

0

0.5

0.5

mg/kg

mg/kg

<0.5

< 0.5

<0.5

< 0.5

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Total Phenols

Total Phenols

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PCBs in Soil (continued)

SE272142.015

SE272334.020

	landed)						Would	00. MIC-(AO)-	, LIAN JOURNEO
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272387.010	LB326538.014		Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0.1570895920	0.1587132188	30	1
Total Phenolics in	n Soil						Meth	od: ME-(AU)-	ENVJAN29
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

Total Recover	shle Flement	e in Soil/Mag	te Solide/Ma	terials by ICPOES

LB326731.014

LB326731.022

Fotal Recoverable	Elements in Soil/Waste Solids/N	laterials by ICPOES				Method: ME-	(AU)-[ENV]A	N040/AN3
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272334.010	LB326559.014	Arsenic, As	mg/kg	1	8	10	42	19
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	16	16	33	0
		Copper, Cu	mg/kg	0.5	13	13	34	5
		Nickel, Ni	mg/kg	0.5	2.2	1.9	55	16
		Lead, Pb	mg/kg	1	13	16	37	19
		Zinc, Zn	mg/kg	2	16	17	42	8
SE272334.019	LB326559.024	Arsenic, As	mg/kg	1	4	6	52	45
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	5.1	5.4	39	6
		Copper, Cu	mg/kg	0.5	11	14	34	29
		Nickel, Ni	mg/kg	0.5	0.5	1.0	95	60
		Lead, Pb	mg/kg	1	8	11	41	33
		Zinc, Zn	mg/kg	2	6.1	8.6	57	34
SE272334.022	LB326560.023	Arsenic, As	mg/kg	1	1	2	82	55
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	8.6	11	35	23
		Copper, Cu	mg/kg	0.5	42	48	31	13
		Nickel, Ni	mg/kg	0.5	82	84	31	2
		Lead, Pb	mg/kg	1	4	8	46	63 †
		Zinc, Zn	mg/kg	2	45	49	34	7
SE272387.010	LB326560.014	Arsenic, As	mg/kg	1		54.2231908823	52	11
		Cadmium, Cd	mg/kg	0.3	0.1870424597	0.1360791596	200	0
		Chromium, Cr	mg/kg	0.5		@9.6527685294		20
		Copper, Cu	mg/kg	0.5	24.078513909	26.7450573529	32	36 †
		Nickel, Ni	mg/kg	0.5	22.438262567	23.2363777731	32	3
		Lead, Pb	mg/kg	1		94.364964285		17
		Zinc, Zn	mg/kg	2		611.597829831		3
race Metals (Dis	solved) in Water by ICPMS						od: ME-(AU)-	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate		RPD
SE272439.002	LB326753.013	Arsenic	μg/L	1	2	2	70	1
52272400.002	20020700.010	Cadmium	μg/L	0.1	<0.1	<0.1	200	0
		Chromium	μg/L	1	<1	<1	169	0
		Copper	μg/L	1	<1	<1	200	0
		Lead	μg/ε μg/L	1	<1	<1	200	0
		Nickel	μg/ε μg/L	1	<1	<1	168	0
		Zinc	μg/L	5	<5	9	90	53
Old (Total Decou	enchie Liudreentene) in Ceil	Zilit	μÿ/L	5	<5	-		
	erable Hydrocarbons) in Soil	Devenuestor	11-14-		Original		od: ME-(AU)-	
Driginal	Duplicate	Parameter	Units	LOR	Original		Criteria %	RPD
SE272334.011	LB326537.026	TRH C10-C14	mg/kg	20	<20	<20	200	0
		TRH C15-C28	mg/kg	45	<45	<45	200	0
		TRH C29-C36	mg/kg	45	<45	75	108	50
		TRH C37-C40	mg/kg	100	<100	<100	200	0
		TRH C10-C36 Total	mg/kg	110	<110	<110	200	0

Method: ME-(AU)-[ENV]AN403

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

	erable Hydrocarbons								
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272334.011	LB326537.026		TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	194	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE272334.018	LB326537.027		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
		Interne Bando	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)		120	<120	<120	200	0
25272224 020	1 0006500 005			mg/kg		<120	<120		0
SE272334.020	LB326538.025		TRH C10-C14	mg/kg	20			200	
			TRH C15-C28	mg/kg	45	<45	<45	135	0
			TRH C29-C36	mg/kg	45	79	60	94	27
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	187	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	91	<90	137	1
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE272387.010	LB326538.014		TRH C10-C14	mg/kg	20	8.217755889	76.1286362896	200	0
			TRH C15-C28	mg/kg	45	38.357957318	43.451350991€	80	6
			TRH C29-C36	mg/kg	45	08.14765517	5 14.044397119	71	5
			TRH C37-C40	mg/kg	100	39.228744250	76.1917860892	168	0
			TRH C10-C36 Total	mg/kg	110	96.50561249	3:07.495748110	84	5
			TRH >C10-C40 Total (F bands)	mg/kg	210		481.414141414	127	29
		TRH F Bands	TRH >C10-C16	mg/kg	25		58.2446721978	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90		458.338287708	88	5
			TRH >C34-C40 (F4)	mg/kg	120		7:23.075853705	132	3
					120				
RH (Total Recov	erable Hydrocarbons) in Water						d: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE272301.005	LB326528.028		TRH C10-C14	µg/L	50	<50	<50	168	0
			TRH C15-C28	µg/L	200	<200	<200	200	0
			TRH C29-C36	µg/L	200	<200	<200	200	0
			TRH C37-C40	µg/L	200	<200	<200	200	0
			TRH C10-C40	µg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<60	<60	176	0
			TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	176	0
			TRH >C16-C34 (F3)	μg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	μg/L	500	<500	<500	200	0
				μ9/ε	500	~300			
							Metho	d: ME-(AU)·	-[ENV]AN
OC's in Soil									
OC's in Soil Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
Driginal	Duplicate LB326545.014	Fumigants	Parameter 2,2-dichloropropane	Units mg/kg	LOR 0.1	Original <0.1	Duplicate <0.1	Criteria % 200	RPD ^o
Driginal		Fumigants							
Driginal		Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
Driginal		Fumigants	2,2-dichloropropane 1,2-dichloropropane	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	200 200	0
Driginal		Fumigants	2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	200 200 200	0 0 0
Driginal			2.2-dichloropropane 1.2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200	0 0 0 0
Driginal		Halogenated	2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1	200 200 200 200 200 200	0 0 0 0 0
Driginal			2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 1 1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1	<0.1 <0.1 <0.1 <0.1 <0.1 <1 <1	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
Driginal		Halogenated	2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 1 1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <0.1	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0
		Halogenated	2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 1 1 0.1 1 0.1 1	<0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <0.1 <1 <1 <1 <1	<0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane Chloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 1 1 0.1 1 1 1 1	 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 	 <0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 <1 <1 <1 <1 <1 	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0
Driginal		Halogenated	2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,2-dibromoethane (EDB) Dichlorodifluoromethane (CFC-12) Chloromethane Vinyl chloride (Chloroethene) Bromomethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 1 1 0.1 1 0.1 1	<0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <1 <0.1 <1 <1 <1 <1	<0.1 <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 <1 <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

iginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
272334.010	LB326545.014	Halogenated	lodomethane	mg/kg	5	<5	<5	200	0
272004.010	20020040.014	Aliphatics	Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	200	0
		, inprication	Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
								200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1		
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	200	C
			Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	<0.1	<0.1	200	C
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	C
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	C
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	(
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	(
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	(
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	C
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	(
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	C
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,4-dichlorobenzene		0.1	<0.1	<0.1	200	
				mg/kg					
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	(
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	(
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	C
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	(
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	C
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			1,3,5-trimethylbenzene		0.1	<0.1	<0.1	200	
				mg/kg					
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	(
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	0
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	(
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	(
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	(
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	(
			Vinyl acetate*	mg/kg	10	<10	<10	200	
			MIBK (4-methyl-2-pentanone)		10	<10	<1	200	
				mg/kg					
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.6	10.1	50	1
			d8-toluene (Surrogate)	mg/kg	-	8.1	10.0	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.5	9.4	50	2
		Totals	Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	200	C
			Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	200	
			Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD %
SE272334.010	LB326545.014	Totals	Total VOC*	mg/kg	24	<24	<24	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
		Trihalomethan	Chloroform (THM)	mg/kg	0.1	<0.1	<0.1	200	0
		es	Bromodichloromethane (THM)	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromochloromethane (THM)	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform (THM)	mg/kg	0.1	<0.1	<0.1	200	0
SE272334.019	LB326545.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.2	8.7	50	16
			d8-toluene (Surrogate)	mg/kg	-	10.9	9.5	50	13
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.0	8.5	50	6
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE272334.022	LB326546.027	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.4	8.5	50	14
		Ū	d8-toluene (Surrogate)	mg/kg	-	7.9	9.2	50	15
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	9.5	50	12
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE272387.010	LB326546.015	Monocyclic	Benzene	mg/kg	0.1	0	0	200	0
		Aromatic	Toluene	mg/kg	0.1	0.062483985	90.0617917238		0
			Ethylbenzene	mg/kg	0.1		30.0013128327		0
			m/p-xylene	mg/kg	0.2		60.0055673641	200	0
			o-xylene	mg/kg	0.1	0.004750830	90.0033361427	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	0.020604655	50.0176939906	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	_		48.8812719361		0
			d8-toluene (Surrogate)	mg/kg	-		19.6084031070		1
			Bromofluorobenzene (Surrogate)	mg/kg	-		79.9640883939		1
		Totals	Total BTEX*	mg/kg	0.6	0	0	200	0
			Total Xylenes*	mg/kg	0.3		50.0089035069		0

VOCS III Water							Meur	IOU. ME-(AU)-	EIAA MAAAA
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272301.001	LB326770.026	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	μg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.7	8.7	30	12
			d8-toluene (Surrogate)	μg/L	-	10.3	8.0	30	25
			Bromofluorobenzene (Surrogate)	μg/L	-	8.8	8.8	30	0
		Totals	Total BTEX	μg/L	3	<3	<3	200	0
	LB326770.027	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.7	8.9	30	9
			d8-toluene (Surrogate)	μg/L	-	10.3	8.1	30	24
			Bromofluorobenzene (Surrogate)	µg/L	-	8.8	8.2	30	7

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOCs in Water (continued)

VOCs in Water (co	ontinued)						Metho	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272301.001	LB326770.027	Totals	Total BTEX	µg/L	3	<3	<3	200	0
Volatile Petroleum	Hydrocarbons in So	il					Metho	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272334.010	LB326545.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.6	10.1	50	17
			d8-toluene (Surrogate)	mg/kg	-	8.1	10.0	50	21
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.5	9.4	50	23
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE272334.019	LB326545.024		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.2	8.7	50	16
			d8-toluene (Surrogate)	mg/kg	-	10.9	9.5	50	13
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.0	8.5	50	6
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE272334.022	LB326546.027		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.4	8.5	50	14
			d8-toluene (Surrogate)	mg/kg	-	7.9	9.2	50	15
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	9.5	50	12
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE272387.010	LB326546.015		TRH C6-C10	mg/kg	25	7.382329386	57.0999654015	200	0
			TRH C6-C9	mg/kg	20	6.902068641	26.6347932584	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.862324176	48.8812719361	50	0
			d8-toluene (Surrogate)	mg/kg	-	9.532314521	19.6084031070	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.099882868	79.9640883939	50	1
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	7.382329386	57.0999654015	200	0
/olatile Petroleum	Hydrocarbons in Wa	ater					Metho	od: ME-(AU)-	[ENV]AN43
Original			Devementer	L Incide			Dunligate		

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272301.001	LB326770.026		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.7	8.7	30	12
			d8-toluene (Surrogate)	µg/L	-	10.3	8.0	30	25
			Bromofluorobenzene (Surrogate)	µg/L	-	8.8	8.8	30	0
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
	LB326770.027		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.7	8.9	30	9
			d8-toluene (Surrogate)	µg/L	-	10.3	8.1	30	24
			Bromofluorobenzene (Surrogate)	µg/L	-	8.8	8.2	30	7
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312 Mercury in Soil Sample Numb Expected Criteria % Recovery % LOR Result Parameter Units LB326566.002 80 - 120 Mercury 0.05 0.20 0.2 mg/kg 99 LB326567.002 Mercury mg/kg 0.05 0.21 0.2 80 - 120 107

	Soil						Nethod: ME-(A	
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB326537.002		Delta BHC	mg/kg	0.1	0.1	0.2	60 - 140	64
		Heptachlor	mg/kg	0.1	0.1	0.2	60 - 140	64
		Aldrin	mg/kg	0.1	0.1	0.2	60 - 140	63
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	61
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	61
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	65
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	90
B326538.002		Delta BHC	mg/kg	0.1	0.1	0.2	60 - 140	73
		Heptachlor	mg/kg	0.1	0.1	0.2	60 - 140	74
		Aldrin	mg/kg	0.1	0.1	0.2	60 - 140	73
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	69
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	68
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	76
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)		-	0.2	0.15	40 - 130	91
		Tetrachioro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14			
P Pesticides in S	Soil					N	lethod: ME-(A	U)-[ENV]AN
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B326537.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	83
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	86
		Dichlorvos	mg/kg	0.5	1.4	2	60 - 140	71
		Ethion	mg/kg	0.2	1.8	2	60 - 140	91
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	70 - 130	86
	-	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	105
B326538.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	2	60 - 140	80
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	84
		Dichlorvos	mg/kg	0.5	1.5	2	60 - 140	75
		Dichlorvos		0.0	1.0	2	00 140	10
		Ethiop	malka	0.2	16	2	60 - 140	82
	Surrogates	Ethion 2.fluorobiobeoud (Surrogate)	mg/kg	0.2	1.6	2	60 - 140 70 - 130	82
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	70 - 130	100
		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)				0.5 0.5	70 - 130 70 - 130	100 88
AH (Polynuclear	Surrogates Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5 0.5	70 - 130	100 88
	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5 0.5	70 - 130 70 - 130	100 88 U)-[ENV]AN
AH (Polynuclear Sample Number LB326537.002	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soil	mg/kg mg/kg	-	0.5 0.4	0.5 0.5	70 - 130 70 - 130 /ethod: ME-(A	100 88
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soil Parameter	mg/kg mg/kg Units	LOR	0.5 0.4 Result	0.5 0.5 N Expected	70 - 130 70 - 130 /ethod: ME-(A Criteria %	100 88 U)-[ENV]AN Recovery
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene	mg/kg mg/kg Units mg/kg	- - LOR 0.1	0.5 0.4 Result 3.7	0.5 0.5 K Expected 4	70 - 130 70 - 130 //ethod: ME-(A/ Criteria % 60 - 140	100 88 U)-[ENV]AN Recovery 93
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene	mg/kg mg/kg Units mg/kg mg/kg	- - 0.1 0.1	0.5 0.4 Result 3.7 3.6	0.5 0.5 Expected 4 4	70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140	100 88 U)-[ENV]AN Recovery 93 89
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7	0.5 0.5 Expected 4 4 4	70 - 130 70 - 130 Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AN Recovery 93 89 93
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rrbons) in Soli Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0	0.5 0.5 Expected 4 4 4 4 4 4	70 - 130 70 - 130 Aethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AN Recovery 93 89 93 99
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8	0.5 0.5 Expected 4 4 4 4 4 4 4 4	70 - 130 70 - 130 Aethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AI Recover 93 89 93 99 101 95
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene Pyrene	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2	0.5 0.5 Expected 4 4 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AN Recover 93 89 93 99 101 95 106
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 4	70 - 130 70 - 130 Aethod: ME-(A Criteria % 60 - 140 60 - 140	100 88 Recovery 93 89 93 99 101 95 106 105
Sample Number	Aromatic Hydroca	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phuoranthene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5	70 - 130 70 - 130 Aethod: ME-(A Criteria % 60 - 140 60 - 140 70 - 130	100 88 U)-[ENV]AP Recovery 93 93 99 30 99 101 95 106 105 86
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5	70 - 130 70 - 130 Aethod: ME-(Al Criteria % 60 - 140 60 - 140 70 - 130 70 - 130	100 88 U)-[ENV]AP Recovery 93 99 93 99 101 95 106 105 86 86
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) In Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg Units mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4 0.5	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5	70 - 130 70 - 130 Aethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130	100 88 Recover 93 99 93 99 101 95 106 105 86 86 86 86
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene	mg/kg mg/kg Units mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4 0.5 4.1	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 4	70 - 130 70 - 130 Aethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140	100 88 Recover 93 99 93 99 101 95 106 105 86 86 86 105 103
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) trbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 0.4 0.4 0.5 4.1 4.1	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 0.5 4 4	70 - 130 70 - 130 Acthod: ME-(A) 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 60 - 140	100 88 U)-[ENV]AN Recovery 93 89 93 99 101 95 106 105 86 86 86 86 86 105 103
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) trbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 0.4 0.4 0.4 0.5 4.1 4.1 3.9	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 0.5 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 60 - 140 70 - 130 70 - 140 70 -	100 88 Recover 93 89 93 99 101 95 106 105 86 86 86 105 103 102 88
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) trbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) Maphthalene Acenaphthylene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.0 3.8 4.2 4.2 0.4 0.4 0.5 4.1 4.1 3.9 3.9	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 0.5 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 Recover 93 89 93 99 101 95 106 105 86 86 86 86 105 103 102 98 98
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) trbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Acenaphthalene Acenaphthylene Accenaphthylene Accenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 4.2 0.4 0.4 0.4 0.4 0.5 4.1 4.1 3.9 3.9 4.1	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 6.5 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AI Recover 93 89 93 99 101 95 106 105 86 86 86 105 86 105 303 102 98 98 98
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Irbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Anthracene Phuenanthrene Acenaphthylene Anthracene Fluoranthene	mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4 0.4 0.5 4.1 4.1 3.9 3.9 3.9 4.1 3.8	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 0.5 4 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 70 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AI Recover 93 89 93 99 101 95 106 105 86 86 86 86 105 103 102 98 98 98 101
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) trbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Acenaphthalene Acenaphthylene Accenaphthylene Accenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 4.2 0.4 0.4 0.4 0.4 0.5 4.1 4.1 3.9 3.9 4.1	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 6.5 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 Recover 93 99 93 99 101 95 106 105 86 86 105 103 102 98 98 98
Sample Number B326537.002	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Irbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Anthracene Phuenanthrene Acenaphthylene Anthracene Fluoranthene	mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4 0.4 0.5 4.1 4.1 3.9 3.9 3.9 4.1 3.8	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 0.5 4 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 70 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 D)-[ENV]A Recover 93 89 93 99 101 95 106 105 86 86 86 105 103 102 98 98 98
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Irbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) Naphthalene Acenaphthylene Phenanthrene Phylenanthrene Phylenanthrene Phylenanthrene Phylenanthrene Pyrene	mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4 0.4 0.5 4.1 4.1 3.9 3.9 3.9 4.1 3.8 4.1	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 4 4 4 4 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 70 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 88 U)-[ENV]AI Recover 93 89 93 99 101 95 106 105 86 86 86 105 103 102 98 98 98
Sample Number B326537.002	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Phenanthrene Phenathrene Benzo(a)pyrene	mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 4.2 0.4 0.4 0.5 4.1 4.1 3.9 3.9 4.1 3.8 4.1 3.8 4.1 4.9	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5 0.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 70 - 130 70 - 130 60 - 140	100 88 U)-[ENV]AI Recover 93 89 93 99 101 95 106 105 86 86 86 105 105 106 105 88 88 105 102 98 98 98 98 101 95 102
Sample Number	Aromatic Hydroca r	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Benzo(a)pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.4 Result 3.7 3.6 3.7 3.9 4.0 3.8 4.2 4.2 4.2 0.4 0.4 0.5 4.1 4.1 3.9 3.9 4.1 3.8 4.1 3.8 4.1 4.9 0.5	0.5 0.5 Expected 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	70 - 130 70 - 130 Acthod: ME-(A) Criteria % 60 - 140 <	100 88 U)-[ENV]AN Recovery 93 89 93 99 101 95 106 105 86 86 86 105 103 102 98 98 98 101 95 102 122 93

17/10/2024

Sample Number

Parameter

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

CBs in Soil (continued)					N	lethod: ME-(Al	J)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326537.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	73
LB326538.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	90

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326731.002	Total Phenols	mg/kg	0.5	20	20	80 - 120	102

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements	in Soil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326559.002	Arsenic, As	mg/kg	1	340	318.22	80 - 120	108
	Cadmium, Cd	mg/kg	0.3	4.8	4.81		100
	Chromium, Cr	mg/kg	0.5	38	38.31		100
	Copper, Cu	mg/kg	0.5	310	290	80 - 120	105
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	103
	Lead, Pb	mg/kg	1	99	318.22 80 - 120 4.81 70 - 130 38.31 80 - 120 290 80 - 120 187 80 - 120 89.9 80 - 120 273 80 - 120 318.22 80 - 120 318.23 80 - 120 318.24 80 - 120 318.25 80 - 120 318.31 80 - 120	110	
	Zinc, Zn	mg/kg	2	290	273	80 - 120	107
LB326560.002	Arsenic, As	mg/kg	1	330	318.22	80 - 120	103
	Cadmium, Cd	mg/kg	0.3	4.2	4.81	70 - 130	88
	Chromium, Cr	mg/kg	0.5	39	38.31	80 - 120	102
	Copper, Cu	mg/kg	0.5	300	290	80 - 120	104
	Nickel, Ni	mg/kg	0.5	180	187	80 - 120	99
	Lead, Pb	mg/kg	1	89	89.9	80 - 120	99
	Zinc, Zn	mg/kg	2	290	273	80 - 120	106

Trace Metals (Dissolved) in Water by ICPMS

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326753.002	Arsenic	µg/L	1	20	20	80 - 120	102
	Cadmium	µg/L	0.1	20	20	80 - 120	101
	Chromium	μg/L	1	20	20	80 - 120	100
	Copper	μg/L	1	20	20	80 - 120	100
	Lead	µg/L	1	21	20	80 - 120	104
	Nickel	μg/L	1	19	20	80 - 120	96
	Zinc	μg/L	5	23	20	80 - 120	114

TRH (Total Recoverable Hydrocarbons) in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB326537.002		TRH C10-C14	mg/kg	20	43	40	60 - 140	107
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	102
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	90
	TRH F Bands	TRH >C10-C16	mg/kg	25	44	40	60 - 140	110
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	95
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	92
LB326538.002		TRH C10-C14	mg/kg	20	45	40	60 - 140	114
		TRH C15-C28	mg/kg	45	48	40	60 - 140	119
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	90
	TRH F Bands	TRH >C10-C16	mg/kg	25	46	40	60 - 140	114
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	107
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	92

RH (Total Recover	rable Hydrocarboi	ns) in Water				N	lethod: ME-(A	J)-[ENV]AN4(
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
_B326528.002		TRH C10-C14	µg/L	50	1000	1200	60 - 140	84
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	104
		TRH C29-C36	µg/L	200	1200	1200	60 - 140	101
	TRH F Bands	TRH >C10-C16	μg/L	60	1100	1200	60 - 140	93
		TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	107
		TRH >C34-C40 (F4)	μg/L	500	610	600	60 - 140	101

Units LOR

Parameter

Method: ME-(AU)-[ENV]AN318

Method: ME-(AU)-[ENV]AN403

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB326545.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	3.3	5	60 - 140	65
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	4.4	5	60 - 140	88
	•	Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	5.0	5	60 - 140	100
	Halogenated	Chlorobenzene	mg/kg	0.1	4.6	5	60 - 140	92
	Monocyclic	Benzene	mg/kg	0.1	4.3	5	60 - 140	86
	Aromatic	Toluene	mg/kg	0.1	4.6	5	60 - 140	92
		Ethylbenzene	mg/kg	0.1	4.5	5	60 - 140	90
		m/p-xylene	mg/kg	0.2	8.7	10	60 - 140	87
		o-xylene	mg/kg	0.1	4.4	5	60 - 140	87
	Trihalomethan	Chloroform (THM)	mg/kg	0.1	4.3	5	60 - 140	86
LB326546.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	3.4	5	60 - 140	67
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	5.6	5	60 - 140	112
		Trichloroethene (Trichloroethylene,TCE)	mg/kg	0.1	5.2	5	60 - 140	104
	Halogenated	Chlorobenzene	mg/kg	0.1	5.1	5	60 - 140	101
	Monocyclic	Benzene	mg/kg	0.1	4.7	5	60 - 140	93
	Aromatic	Toluene	mg/kg	0.1	5.2	5	60 - 140	104
		Ethylbenzene	mg/kg	0.1	5.0	5	60 - 140	100
		m/p-xylene	mg/kg	0.2	9.8	10	60 - 140	98
		o-xylene	mg/kg	0.1	5.1	5	60 - 140	102
	Trihalomethan	Chloroform (THM)	mg/kg	0.1	5.2	5	60 - 140	103
OCs in Water							Method: ME-(A	
		Demonstra	Units	LOR	Desult			
Sample Number LB326770.002	Monocyclic	Parameter Benzene		0.5	Result 48	Expected 45.45	Criteria % 60 - 140	Recovery 105
LB320770.002	Aromatic	Toluene	μg/L	0.5	53	45.45	60 - 140	116
	Aromatic	Ethylbenzene	µg/L	0.5	48	45.45	60 - 140	105
			µg/L	1	95		60 - 140	105
		m/p-xylene	µg/L	1			60 440	104
		a verda ver		0.5		90.9	60 - 140	104
		o-xylene	µg/L	0.5	47	45.45	60 - 140	104
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	47 9.7	45.45 10	60 - 140 60 - 140	104 97
	Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L		47 9.7 10	45.45 10 10	60 - 140 60 - 140 70 - 130	104 97 105
		d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	µg/L	-	47 9.7	45.45 10 10 10	60 - 140 60 - 140 70 - 130 70 - 130	104 97 105 108
olatile Petroleum	Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L	-	47 9.7 10	45.45 10 10 10	60 - 140 60 - 140 70 - 130	104 97 105 108
	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L	-	47 9.7 10	45.45 10 10 10	60 - 140 60 - 140 70 - 130 70 - 130	104 97 105 108 J)-[ENV]AN
Sample Number	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L	-	47 9.7 10 11	45.45 10 10 10	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A l	104 97 105 108
Sample Number	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter	μg/L μg/L μg/L Units	- - LOR	47 9.7 10 11 Result	45.45 10 10 10 Expected	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A) Criteria %	104 97 105 108 J)-[ENV]AN Recovery
Sample Number	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10	μg/L μg/L μg/L Units mg/kg	- - LOR 25	47 9.7 10 11 Result 77	45.45 10 10 10 Expected 92.5	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83
Sample Number LB326545.002	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L Units mg/kg mg/kg	- - - 25 20	47 9.7 10 11 Result 77 70	45.45 10 10 10 Expected 92.5 80	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A) Criteria % 60 - 140 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83 87
Sample Number _B326545.002	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	- - - 25 20 25	47 9.7 10 11 Result 77 70 51	45.45 10 10 10 Expected 92.5 80 62.5	60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83 87 81
Sample Number _B326545.002	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C10	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	- - - 25 20 25 25 25	47 9.7 10 11 Result 77 70 51 79	45.45 10 10 10 Expected 92.5 80 62.5 92.5	60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83 87 81 85
Sample Number LB326545.002 LB326546.002	Hydrocarbons in S	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C10 minus BTEX (F1) TRH C6-C10	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 25 20 25 25 25 20	47 9.7 10 11 Result 77 70 51 79 69	45.45 10 10 10 Expected 92.5 80 62.5 92.5 80 62.5	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	104 97 105 108 U)-[ENV]AN Recovery 83 87 81 85 86 86 86
Sample Number LB326545.002 LB326546.002	Hydrocarbons in S VPH F Bands VPH F Bands Hydrocarbons in V	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 Vater	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 25 20 25 25 20 25 20 25	47 9.7 10 11 Result 77 70 51 79 69 54	45.45 10 10 10 Expected 92.5 80 62.5 92.5 80 62.5	60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al	104 97 105 108 U)-[ENV]AN Recovery 83 87 81 85 86 86 86
Sample Number LB326545.002 LB326546.002 Colatile Petroleum Sample Number	Hydrocarbons in S VPH F Bands VPH F Bands Hydrocarbons in V	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C9 TRH C6-C10 TRH C6-C10 TRH C6-C10 Vater Parameter	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 25 20 25 25 25 20 25 25 20 25 LOR	47 9.7 10 11 Result 77 70 51 79 69 54 Result	45.45 10 10 10 Expected 92.5 80 62.5 92.5 80 62.5 80 62.5	60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria %	104 97 105 108 J)-[ENV]AN Recovery 83 87 81 85 86 86 86 96 86 V)-[ENV]AN Recovery
Sample Number LB326545.002 LB326546.002 Colatile Petroleum Sample Number	Hydrocarbons in S VPH F Bands VPH F Bands Hydrocarbons in V	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 TRH C6-C10	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L	- - - 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	47 9.7 10 11 Result 77 70 51 79 69 54 Result 1000	45.45 10 10 10 Expected 92.5 80 62.5 92.5 80 62.5 80 62.5 80 62.5	60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(Al 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Criteria % Criteria % 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83 87 81 85 86 86 86 86 J)-[ENV]AN Recovery 105
Sample Number LB326545.002 LB326546.002 Colatile Petroleum Sample Number	Hydrocarbons in S VPH F Bands VPH F Bands Hydrocarbons in V	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C9 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	- - - 25 20 25 25 20 25 25 20 25 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	47 9.7 10 11 Result 77 70 51 79 69 54 Result 1000 890	45.45 10 10 Expected 92.5 80 62.5 92.5 80 62.5 80 62.5 946.63 818.71	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 Criteria % 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83 87 81 85 86 86 86 86 U)-[ENV]AN Recovery 105 108
Sample Number LB326545.002 LB326546.002 olatile Petroleum Sample Number	Hydrocarbons in S VPH F Bands VPH F Bands Hydrocarbons in V	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) coll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C9 TRH C6-C9 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 Upper Coll Odd Odd TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	- - - 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	47 9.7 10 11 Result 77 70 51 79 69 54 Result 1000 890 9.7	45.45 10 10 Expected 92.5 80 62.5 92.5 80 62.5 80 62.5 92.5 80 62.5 80 80 62.5 80 80 80 80 80 80 80 80 80 80 80 80 80	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 Criteria % 60 - 140 Method: ME-(Al) Criteria % 60 - 140 60 -	104 97 105 108 J)-[ENV]AN Recovery 83 87 81 85 86 86 86 J)-[ENV]AN Recovery 105 108 97
Sample Number LB326545.002 LB326546.002	Hydrocarbons in S VPH F Bands VPH F Bands Hydrocarbons in V	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 TRH C6-C10 minus BTEX (F1) TRH C6-C9 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	- - - 25 20 25 25 20 25 25 20 25 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	47 9.7 10 11 Result 77 70 51 79 69 54 Result 1000 890	45.45 10 10 Expected 92.5 80 62.5 92.5 80 62.5 80 62.5 946.63 818.71	60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 Criteria % 60 - 140	104 97 105 108 J)-[ENV]AN Recovery 83 87 81 85 86 86 86 U)-[ENV]AN Recovery 105 108

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN312

Method: ME-(ALI)-JENVJAN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN31:							(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272334.023	LB326532.004	Mercury	mg/L	0.0001	0.0019	<0.0001	0.008	101

Mercury in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272334.001	LB326566.004	Mercury	mg/kg	0.05	0.24	<0.05	0.2	101
SE272387.001	LB326567.004	Mercury	mg/kg	0.05	0.23	0.04673567293	0.2	93

OC Pesticides in Soil

C Pesticides in								hod: ME-(Al	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E272334.001	LB326537.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	77
			Heptachlor	mg/kg	0.1	0.1	<0.1	0.2	70
			Aldrin	mg/kg	0.1	0.1	<0.1	0.2	68
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	_	_
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	74
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	64
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	
			o,p'-DDD*		0.2	<0.2	<0.2	-	-
				mg/kg				-	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1		-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1		
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.1	<0.1	0.2	63
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	<1	-	-
			Total OC VIC EPA	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	-	98
272387.001	LB326538.004		Alpha BHC	mg/kg	0.1	<0.1	0	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	-	-
			Beta BHC	mg/kg	0.1	<0.1	0	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	0	-	-
			Delta BHC	mg/kg	0.1	0.2	0	0.2	85
			Heptachlor	mg/kg	0.1	0.2	0	0.2	80
			Aldrin	mg/kg	0.1	0.2	0	0.2	76
			Isodrin	mg/kg	0.1	<0.1	0	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	0	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	0	_	
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	-	-
			o,p'-DDE*	mg/kg	0.2	<0.2	0		
			p,p'-DDE	mg/kg	0.1	<0.1	0	-	-
							0		
			Dieldrin	mg/kg	0.2	<0.2		0.2	76
			Endrin	mg/kg	0.2	<0.2	0	0.2	73
			Beta Endosulfan	mg/kg	0.2	<0.2	0	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	0	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	0	-	-

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	Soil (continued)								J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
272387.001	LB326538.004		Endrin aldehyde	mg/kg	0.1	<0.1	0	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	0	-	-
			p,p'-DDT	mg/kg	0.1	0.2	0	0.2	80
			Endrin ketone	mg/kg	0.1	<0.1	0	-	-
			Methoxychlor	mg/kg	0.1	<0.1	0	-	-
			Mirex	mg/kg	0.1	<0.1	0	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	0	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	0	-	-
			Total OC VIC EPA	mg/kg	1	<1	0	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15346623733	-	101
Pesticides in	Soil						Meth	od: ME-(AU	J)-IENVIA
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
272334.001	LB326537.004				0.2	<0.2	-		Recov
272334.001	LB326537.004		Azinphos-methyl (Guthion)	mg/kg			<0.2		-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	<0.2	2	89
			Diazinon (Dimpylate)	mg/kg	0.5	1.8	<0.5	2	84
			Dichlorvos	mg/kg	0.5	1.5	<0.5	2	7
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	2.1	<0.2	2	10
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	7.2	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	-	93
		cunogutoo	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5		10
070007 004	L D226528 004							-	-
272387.001	LB326538.004		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0.00190274589	-	
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	0.00719407430	2	9
			Diazinon (Dimpylate)	mg/kg	0.5	2.0	0.00355670233	2	9
			Dichlorvos	mg/kg	0.5	1.5	0	2	74
			Dimethoate	mg/kg	0.5	<0.5	0.01609593365	-	-
			Ethion	mg/kg	0.2	2.2	0	2	11
			Fenitrothion	mg/kg	0.2	<0.2	0.00099557446	-	-
			Malathion	mg/kg	0.2	<0.2	0.00040575404	-	-
			Methidathion	mg/kg	0.5	<0.5	0.00074479854	-	-
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.00162879200	-	-
			Total OP Pesticides*	mg/kg	1.7	7.6	0	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.46098903071	_	10
		Gunogates	d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.45754281192	_	9
l (Dehmuelee	r Aromatic Hydrocarb	ana) in Sail				0.0		od: ME-(AL	
	-				100				
Sample	Sample Number		Parameter Naphthalene	Units	LOR	Result	Original	Spike	Recov 94
272334.001	LB326537.004			mg/kg	0.1	3.8	<0.1	4	
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	3.7	<0.1	4	93
			Acenaphthene	mg/kg	0.1	3.7	<0.1	4	94
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.0	<0.1	4	10
			Anthracene	mg/kg	0.1	4.0	<0.1	4	10
			Fluoranthene	mg/kg	0.1	4.0	<0.1	4	98
			Pyrene	mg/kg	0.1	4.2	<0.1	4	10
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	_
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	
			Benzo(b&j)fluoranthene			<0.1		-	
				mg/kg	0.1		<0.1	-	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.2	<0.1	4	10
					0.4	-0.1	-0.1	-	-
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	

17/10/2024

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	r Aromatic Hydrocarb Sample Number	,	Parameter	Units	LOR	Result	Original	Spike	J)-[ENV]AN Recove
QC Sample SE272334.001	LB326537.004		Parameter Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	Spike	Recove
5272334.001	LB320337.004		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.1</td><td>4.2</td><td><0.1</td><td>-</td><td></td></lor=0*<>	TEQ (mg/kg)	0.1	4.2	<0.1	-	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.2</td><td><0.2</td><td>-</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	4.2	<0.2	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	4.3	<0.2	-	
			Total PAH (18)		0.8	4.3	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4	-	- 91
		Surroyates	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.4	-	93
			d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.5	0.4	-	93
E272387.001	LB326538.004				0.1	5.0		-	108
E272367.001	LB320336.004		Naphthalene	mg/kg		<0.1	0.01049911859	4	- 125
			2-methylnaphthalene	mg/kg	0.1		0.00622510025	-	-
			1-methylnaphthalene	mg/kg	0.1	0.1	0.00711572569	- 4	
			Acenaphthylene	mg/kg	0.1	4.9	0.04822934193		122
			Acenaphthene	mg/kg	0.1	4.7	0.00675748149	4	117
			Fluorene	mg/kg	0.1	<0.1	0.01142882393	-	-
			Phenanthrene	mg/kg	0.1	5.3	0.19117778269	4	12
			Anthracene	mg/kg	0.1	4.8	0.05557563894	4	11
			Fluoranthene	mg/kg	0.1	6.4	0.56743434615	4	146
			Pyrene	mg/kg	0.1	6.9	0.57439412684	4	158
			Benzo(a)anthracene	mg/kg	0.1	1.2	0.28675359472	-	-
			Chrysene	mg/kg	0.1	1.3	0.34873189244	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.5	0.49245357229	-	
			Benzo(k)fluoranthene	mg/kg	0.1	0.6	0.19261179695	-	-
			Benzo(a)pyrene	mg/kg	0.1	6.6	0.43595587677	4	154
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.7	0.29683541017	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	0.2	0.05798652042	-	-
			Benzo(ghi)perylene	mg/kg	0.1	0.8	0.29630402452	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>7.2</td><td>0.56927167336</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	7.2	0.56927167336	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>7.2</td><td>0.61927167336</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	7.2	0.61927167336	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>7.2</td><td>0.66927167336</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	7.2	0.66927167336	-	-
			Total PAH (18)	mg/kg	0.8	51	3.68265242360	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.46418550408	-	10
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.46098903071	-	10
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.45754281192	-	9
3s in Soil								od: ME-(Al	
Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Reco
272334.001	LB326537.004		Arochlor 1016		0.2	<0.2	<0.2	оріке	Neco
272334.001	LB320337.004		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	
			Arochlor 1221 Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	
				mg/kg	0.2	<0.2	<0.2	-	
			Arochlor 1242	mg/kg		<0.2		-	
			Arochlor 1248	mg/kg	0.2		<0.2		
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	95
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	9
272387.001	LB326538.004		Arochlor 1016	mg/kg	0.2	<0.2	0	-	
			Arochlor 1221	mg/kg	0.2	<0.2	0	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	0	-	
			American 4040		0.0	-0.2	0		

-

0.4

-

-

<0.2

<0.2

<0.2

0.4

<0.2

<0.2

<1

0

0

0

0

0

0

0

0

0.14951324484

0.2

0.2

0.2

0.2

0.2

0.2

1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

 QC Sample
 Sample Number
 Parameter
 Units
 LOR

Arochlor 1242

Arochlor 1248

Arochlor 1254

Arochlor 1260

Arochlor 1262

Arochlor 1268

Surrogates

Total PCBs (Arochlors)

TCMX (Surrogate)

-

93

99

17/10/2024

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	(AU)-[ENV Spike	Recov
SE272334.001	LB326559.004		Arsenic, As		1	53	6	50	94
5E272334.001	LB320359.004			mg/kg					
			Cadmium, Cd	mg/kg	0.3	45	<0.3	50	90
			Chromium, Cr	mg/kg	0.5	66	15	50	103
			Copper, Cu	mg/kg	0.5	64	17	50	93
			Nickel, Ni	mg/kg	0.5	52	4.1	50	96
			Lead, Pb	mg/kg	1	95	55	50	79
			Zinc, Zn	mg/kg	2	100	59	50	87
E272387.001	LB326560.004		Arsenic, As	mg/kg	1	50	7.58913109020	50	84
			Cadmium, Cd	mg/kg	0.3	42	0.09748371924	50	83
			Chromium, Cr	mg/kg	0.5	61	16.65652978774	50	88
			Copper, Cu	mg/kg	0.5	58	14.43889290882	50	87
			Nickel, Ni	mg/kg	0.5	48	3.46184937288	50	88
			Lead, Pb	mg/kg	1	100	30.33694524843	50	40
			Zinc, Zn	mg/kg	2	110	75.26025687409	50	71
					-				
	overable Hydrocarbo	-						od: ME-(Al	
C Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recov
272334.001	LB326537.004		TRH C10-C14	mg/kg	20	50	<20	40	10
			TRH C15-C28	mg/kg	45	97	49	40	12
			TRH C29-C36	mg/kg	45	73	<45	40	10
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	220	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	210	53	<25	40	1(
		Bands					<25	-	
		Danus	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	53			-
			TRH >C16-C34 (F3)	mg/kg	90	120	<90	40	12
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
272387.001	LB326538.004		TRH C10-C14	mg/kg	20	53	6.58307001544	40	11
			TRH C15-C28	mg/kg	45	110	59.28106937034	40	12
			TRH C29-C36	mg/kg	45	120	73.64210460214	40	11
			TRH C37-C40	mg/kg	100	<100	24.42847315584	-	-
			TRH C10-C36 Total	mg/kg	110	280	32.9231739724	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	220	10.1042424865	-	-
		TRH F	TRH >C10-C16	mg/kg	25	55	9.04419744417	40	11
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	55	0	_	_
			TRH >C16-C34 (F3)	mg/kg	90	160	10.1042424865	40	13
			TRH >C34-C40 (F4)	mg/kg	120	<120	44.72608659661	-	10
			TKT 2034-040 (F4)	Tilg/Kg	120	\$120			-
C's in Soil								od: ME-(Al	
C Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Reco
272334.001	LB326545.004	Monocyclic	Benzene	mg/kg	0.1	4.2	<0.1	5	8
		Aromatic	Toluene	mg/kg	0.1	4.8	<0.1	5	9
			Ethylbenzene	mg/kg	0.1	5.3	<0.1	5	10
					0.2	10	<0.2	10	10
			m/p-xylene	mg/kg	0.2		<0.1	5	10
			m/p-xylene	mg/kg mg/kg	0.2	5.0	-0.1		
		Polycyclic				5.0 <0.1	<0.1	-	-
			o-xylene Naphthalene (VOC)*	mg/kg mg/kg	0.1	<0.1	<0.1	-	
		Polycyclic Surrogates	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg	0.1	<0.1 7.8	<0.1 8.9		7
			o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 -	<0.1 7.8 8.2	<0.1 8.9 9.2		7
		Surrogates	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1	<0.1 7.8 8.2 9.7	<0.1 8.9 9.2 8.8		7 8 9
			o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.6	<0.1 7.8 8.2 9.7 29	<0.1 8.9 9.2 8.8 <0.6	-	7 8 9
170107-004	10206510.001	Surrogates	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3	<0.1 7.8 8.2 9.7 29 15	<0.1 8.9 9.2 8.8 <0.6 <0.3	-	7 8 9
272387.001	LB326546.004	Surrogates Totals Monocyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1	<0.1 7.8 8.2 9.7 29 15 5.1	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260	- - - 5	7 8 9
272387.001	LB326546.004	Surrogates	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1	<0.1 7.8 8.2 9.7 29 15 5.1 5.3	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381	- - 5 5	7 8 9 11
272387.001	LB326546.004	Surrogates Totals Monocyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01688248257	- - 5 5 5 5	7 8 9
272387.001	LB326546.004	Surrogates Totals Monocyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1	<0.1 7.8 8.2 9.7 29 15 5.1 5.3	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381	- - 5 5	7 8 9
272387.001	LB326546.004	Surrogates Totals Monocyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01688248257	- - 5 5 5 5	7 8 9 10 10 10 10
E272387.001	LB326546.004	Surrogates Totals Monocyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1 0.1 0.2	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5 11	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01688248257 0.03825315098	- - 5 5 5 10	7 8 9
272387.001	LB326546.004	Surrogates Totals Monocyclic Aromatic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1 0.1 0.2 0.1	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5 11 5.5	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01688248257 0.03825315098 0.01866530236	- - 5 5 5 5 10 5	7 8 9 10 10 10 10 10 11
272387.001	LB326546.004	Surrogates Totals Monocyclic Aromatic Polycyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Sylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5 11 5.5 <11 5.5 <0.1	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01688248257 0.03825315098 0.01866530236 0.00633433390	- - 5 5 5 10 5 -	7 8 9 10 10 10 10 11 11 11 11
272387.001	LB326546.004	Surrogates Totals Monocyclic Aromatic Polycyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Total Xylenes* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - -	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5 11 5.5 <0.1 10.7 11.4	<0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01686248257 0.03825315098 0.01866530236 0.00633433390 8.39715469096 9.11869973412	- - 5 5 5 10 5 - -	- 77 8 9 - 10 10 10 10 11 11 - - - 10 11 11 10
272387.001	LB326546.004	Surrogates Totals Monocyclic Aromatic Polycyclic	o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX* Benzene Toluene Ethylbenzene m/p-xylene o-xylene Vaphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - - 0.6 0.3 0.1 0.1 0.1 0.2 0.1 0.1 - - - - - - - - - - - - -	<0.1 7.8 8.2 9.7 29 15 5.1 5.3 5.5 11 5.5 <11 5.5 <0.1 10.7	 <0.1 8.9 9.2 8.8 <0.6 <0.3 0.00383173260 0.01796321381 0.01688248257 0.03825315098 0.01866530236 0.0063343390 8.39715469096 	- - 5 5 5 10 5 - - -	7 8 9 10 10 10 10 11 11 11 11

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OCs in Water							Mett	nod: ME-(AU))-[ENV]AN43
QC Sample	Sample Number	r	Parameter	Units	LOR	Original	Spike	Recovery%	
SE272226.001	LB326770.028	Monocyclic	Benzene	µg/L	0.5	0	45.45	98	
		Aromatic	Toluene	µg/L	0.5	0.09043695153	3 45.45	97	
			Ethylbenzene	µg/L	0.5	0.00883142117	45.45	97	
			m/p-xylene	µg/L	1	0.03135398542	2 90.9	97	
			o-xylene	µg/L	0.5	0.01567699271	45.45	97	
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	0.01501594149) -	-	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	7.68494550190) -	84	
			d8-toluene (Surrogate)	µg/L	-	9.15322758617	· _	92	_
			Bromofluorobenzene (Surrogate)	µg/L	-	9.17976225112	2 -	100	_
		Totals	Total BTEX	µg/L	3	0	-	-	
olatile Petroleu	m Hydrocarbons in S	Soil					Mett	nod: ME-(AU)	- -[ENV]AN4:
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE272334.001	LB326545.004		TRH C6-C10	mg/kg	25	88	<25	92.5	93
			TRH C6-C9	mg/kg	20	80	<20	80	99
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.8	8.9	-	78
			d8-toluene (Surrogate)	mg/kg	-	8.2	9.2	-	82
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.7	8.8	-	97
		VPH F	Benzene (F0)	mg/kg	0.1	4.2	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	58	<25	62.5	91
SE272387.001	LB326546.005		TRH C6-C10	mg/kg	25	97	1.17674331726	92.5	103
			TRH C6-C9	mg/kg	20	85	0.73025481242	80	105
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.7	8.39715469096	-	107
			d8-toluene (Surrogate)	mg/kg	-	11.4	9.11869973412	-	114
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.6	9.02037738019	-	106
		VPH F	Benzene (F0)	mg/kg	0.1	5.1	0	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	65	1.17674331726	62.5	102
olatile Petroleu	m Hydrocarbons in V	Nater					Mett	nod: ME-(AU))-[ENV]AN43
QC Sample	Sample Number	r	Parameter	Units	LOR	Original	Spike	Recovery%	
SE272226.001	LB326770.028		TRH C6-C10	µg/L	50	0	946.63	98	1
			TRH C6-C9	μg/L	40	0	818.71	100	1
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	7.68494550190) -	84	1
		-	d8-toluene (Surrogate)	µg/L	-	9.15322758617	· -	92	
			Bromofluorobenzene (Surrogate)	µg/L	-	9.17976225112	2 -	100	
		VPH F	Benzene (F0)	µg/L	0.5	0	-	-	1
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	0	639.67	104	1

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact Client Address	Jesny Marshal EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa Street &890-898 Woodvill	SGS Reference	SE272334A R0
Order Number	E25635	Date Received	23 Oct 2024
Samples	25	Date Reported	24 Oct 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

pH in soil (1:5)

4 items

Sample counts by matrix	4 Soil	Type of documentation received	Email	
Date documentation received	23/10/2024@1:34pr	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	15.4°C	
Sample container provider	SGS	Turnaround time requested	Next Day	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

xchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[ENV]AN122											
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH106_0.2-0.3	SE272334A.007	LB327738	10 Oct 2024	23 Oct 2024	07 Nov 2024	24 Oct 2024	07 Nov 2024	24 Oct 2024			
BH107M_0.3-0.4	SE272334A.009	LB327738	10 Oct 2024	23 Oct 2024	07 Nov 2024	24 Oct 2024	07 Nov 2024	24 Oct 2024			
BH112_0.1-0.2	SE272334A.018	LB327738	10 Oct 2024	23 Oct 2024	07 Nov 2024	24 Oct 2024	07 Nov 2024	24 Oct 2024			
BH113M_0.1-0.2	SE272334A.020	LB327738	10 Oct 2024	23 Oct 2024	07 Nov 2024	24 Oct 2024	07 Nov 2024	24 Oct 2024			
Moisture Content							Method:	ME-(AU)-[ENV]AN00			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH106_0.2-0.3	SE272334A.007	LB327701	10 Oct 2024	23 Oct 2024	24 Oct 2024	23 Oct 2024	28 Oct 2024	24 Oct 2024			
BH107M_0.3-0.4	SE272334A.009	LB327701	10 Oct 2024	23 Oct 2024	24 Oct 2024	23 Oct 2024	28 Oct 2024	24 Oct 2024			
BH112_0.1-0.2	SE272334A.018	LB327701	10 Oct 2024	23 Oct 2024	24 Oct 2024	23 Oct 2024	28 Oct 2024	24 Oct 2024			
BH113M_0.1-0.2	SE272334A.020	LB327701	10 Oct 2024	23 Oct 2024	24 Oct 2024	23 Oct 2024	28 Oct 2024	24 Oct 2024			
oH in soil (1:5)							Method:	ME-(AU)-[ENV]AN10			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH106_0.2-0.3	SE272334A.007	LB327770	10 Oct 2024	23 Oct 2024	17 Oct 2024	24 Oct 2024†	25 Oct 2024	24 Oct 2024			
BH107M_0.3-0.4	SE272334A.009	LB327770	10 Oct 2024	23 Oct 2024	17 Oct 2024	24 Oct 2024†	25 Oct 2024	24 Oct 2024			
BH112_0.1-0.2	SE272334A.018	LB327770	10 Oct 2024	23 Oct 2024	17 Oct 2024	24 Oct 2024†	25 Oct 2024	24 Oct 2024			
BH113M_0.1-0.2	SE272334A.020	LB327770	10 Oct 2024	23 Oct 2024	17 Oct 2024	24 Oct 2024†	25 Oct 2024	24 Oct 2024			

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

SE272334A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Exch	Meth	od: ME-(AU)-[ENV]AN122		
Sample Number	Parameter	Units	LOR	Result
LB327738.001	Exchangeable Sodium, Na	mg/kg	2	-0.136
	Exchangeable Potassium, K	mg/kg	2	-0.1292
	Exchangeable Calcium, Ca	mg/kg	2	-0.2767
	Exchangeable Magnesium, Mg	mg/kg	2	-0.0727

Method: ME-(ALI)-IENVIAN002

Method: ME-(AU)-[ENV]AN101

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

	Con	

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272334A.020	LB327701.017	% Moisture	%w/w	1	9.5	9.5	41	0
SE272937.001	LB327701.009	% Moisture	%w/w	1	3.120356612	14.0235525024	58	25

pH in soil (1:5)

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272898.012	LB327770.016	pH	pH Units	0.1	7.5349	7.5613	31	0
SE272915.001	LB327770.017	pH	pH Units	0.1	8.0158	8.3401	31	4

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and C	changeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)					Nethod: ME-(A	U)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB327738.002	Exchangeable Sodium, Na	meq/100g	0.01	0.18	0.188	80 - 120	94
	Exchangeable Potassium, K	meq/100g	0.01	0.13	0.141	80 - 120	90
	Exchangeable Calcium, Ca	meq/100g	0.01	1.9	2.17	80 - 120	89
	Exchangeable Magnesium, Mg	meq/100g	0.02	1.3	1.53	80 - 120	87
pH in soil (1:5)					N	Nethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB327770.003	pH	pH Units	0.1	7.5	7.415	98 - 102	101

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Jesny Marshal EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jesny.marshal@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilcoa Street & 890-898 Woodvi	SGS Reference	SE272743 R0
Order Number	E25635	Date Received	18 Oct 2024
Samples	6	Date Reported	25 Oct 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	6 Water	Type of documentation received	COC	
Date documentation received	18/10/2024	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	4.9°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

	ater]AN311(Perth)/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H107M	SE272743.001	LB327361	17 Oct 2024	18 Oct 2024	14 Nov 2024	21 Oct 2024	14 Nov 2024	24 Oct 2024
3H109M	SE272743.002	LB327361	17 Oct 2024	18 Oct 2024	14 Nov 2024	21 Oct 2024	14 Nov 2024	24 Oct 2024
QD_241017	SE272743.003	LB327361	17 Oct 2024	18 Oct 2024	14 Nov 2024	21 Oct 2024	14 Nov 2024	24 Oct 2024
QR_241017	SE272743.004	LB327361	17 Oct 2024	18 Oct 2024	14 Nov 2024	21 Oct 2024	14 Nov 2024	24 Oct 2024
AH (Polynuclear Aromat	tic Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H107M	SE272743.001	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	24 Oct 2024
3H109M	SE272743.002	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	24 Oct 2024
QD_241017	SE272743.003	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	25 Oct 2024
QR_241017	SE272743.004	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	25 Oct 2024
er- and Polyfluoroalkyl S	Substances (PFAS) in Aque	ous Samples					Method: I	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H107M	SE272743.001	LB327347	17 Oct 2024	18 Oct 2024	14 Nov 2024	21 Oct 2024	18 Nov 2024	22 Oct 2024
3H109M	SE272743.002	LB327347	17 Oct 2024	18 Oct 2024	14 Nov 2024	21 Oct 2024	18 Nov 2024	22 Oct 2024
otal Phenolics in Water							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H107M	SE272743.001	LB327304	17 Oct 2024	18 Oct 2024	31 Oct 2024	21 Oct 2024	31 Oct 2024	21 Oct 2024
3H109M	SE272743.002	LB327304	17 Oct 2024	18 Oct 2024	31 Oct 2024	21 Oct 2024	31 Oct 2024	21 Oct 2024
ace Metals (Dissolved)	in Water by ICPMS						Method:	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H107M	SE272743.001	LB327614	17 Oct 2024	18 Oct 2024	15 Apr 2025	23 Oct 2024	15 Apr 2025	24 Oct 2024
H109M	SE272743.002	LB327614	17 Oct 2024	18 Oct 2024	15 Apr 2025	23 Oct 2024	15 Apr 2025	24 Oct 2024
D 241017	SE272743.003	LB327614	17 Oct 2024	18 Oct 2024	15 Apr 2025	23 Oct 2024	15 Apr 2025	24 Oct 2024
	SE272743.004	LB327614	17 Oct 2024	18 Oct 2024	15 Apr 2025	23 Oct 2024	15 Apr 2025	24 Oct 2024
RH (Total Recoverable I	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H107M	SE272743.001	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	24 Oct 2024
3H109M	SE272743.002	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	24 Oct 2024
D 241017	SE272743.003	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	24 Oct 2024
QR_241017	SE272743.004	LB327305	17 Oct 2024	18 Oct 2024	24 Oct 2024	21 Oct 2024	30 Nov 2024	24 Oct 2024
OCs in Water							Method:	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H107M	SE272743.001	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
H109M	SE272743.002	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
QD_241017	SE272743.003	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
R_241017	SE272743.004	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
GW_QTS1	SE272743.005	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
GW_QTB1	SE272743.006	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
platile Petroleum Hydrod	carbons in Water						Method:	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H107M	SE272743.001	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
3H109M	SE272743.002	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
QD_241017	SE272743.003	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
QR_241017	SE272743.004	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
GW_QTS1	SE272743.005	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024
GW_QTB1	SE272743.006	LB327582	17 Oct 2024	18 Oct 2024	31 Oct 2024	23 Oct 2024	31 Oct 2024	24 Oct 2024

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420 Parameter Recovery % Sample Numb Units Criteria Sample Name 2-fluorobiphenvl (Surrogate) BH107M SE272743.001 % 40 - 130% 88 BH109M SE272743.002 40 - 130% 92 % d14-p-terphenyl (Surrogate) BH107M SE272743.001 40 - 130% % 81 BH109M SE272743.002 % 40 - 130% 83 d5-nitrobenzene (Surrogate) BH107M SE272743.001 40 - 130% % 94 BH109M SE272743.002 100 40 - 130% % Method: ME-(AU)-IENVIAN404 Per- and Polyfluoroalkyl Substances (PEAS) in Aqueous Samples Sample Name Parameter Sample Number Units Criteria Recovery % (13C2 PFTeDA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 10 - 150% BH109M SE272743.002 10 - 150% 49 % (13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard **BH107M** SE272743 001 % 40 - 300% 88 BH109M SE272743.002 % 40 - 300% 90 (13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 40 - 300% % 86 BH109M SE272743.002 40 - 300% 81 % (13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 40 - 300% 64 BH109M SE272743.002 % 40 - 300% 65 (13C2-PFDoA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 10 - 150% 48 % BH109M SE272743.002 10 - 150% 49 % (13C3-PEBS) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 40 - 150% 88 BH109M SE272743.002 40 - 150% 84 % (13C3-PFHxS) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 40 - 150% 90 % BH109M SE272743.002 40 - 150% % 86 (13C4_PFOA) Isotopically Labelled Internal Recovery Standard BH107M SE272743 001 % 40 - 150% 87 BH109M SE272743.002 % 40 - 150% 89 (13C4-PFBA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 5 - 150% 93 5 - 150% BH109M SE272743.002 ۹N % (13C4-PFHpA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 40 - 150% 96 BH109M SE272743.002 % 40 - 150% 91 (13C5-PFHxA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 40 - 150% 95 BH109M SE272743.002 40 - 150% 93 % (13C5-PFPeA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 35 - 150% 98 BH109M SE272743.002 35 - 150% 94 % (13C6-PFDA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 40 - 150% 66 BH109M SE272743.002 % 40 - 150% 64 (13C7-PFUdA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 30 - 150% 54 BH109M SE272743.002 30 - 150% 51 % (13C8-PFOS) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 40 - 150% 67 BH109M SE272743.002 % 40 - 150% 71 % (13C8-PFOSA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 20 - 150% 65 BH109M SE272743.002 % 20 - 150% 66 (13C9-PFNA) Isotopically Labelled Internal Recovery Standard **BH107M** SE272743.001 % 40 - 150% an BH109M SE272743.002 40 - 150% 97 % (D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 10 - 150% 43 BH109M SE272743.002 10 - 150% 45 % (D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 30 - 170% 44 % BH109M SE272743.002 % 30 - 170% 47 (D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 10 - 150% 47 10 - 150% BH109M 42 SE272743.002 % (D5-N-EtEOSAA) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 20 - 150% 53 20 - 150% BH109M SE272743.002 58 % (D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard BH107M 47 SE272743.001 % 10 - 150% BH109M SE272743.002 % 10 - 150% 45 (D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard BH107M SE272743.001 % 10 - 150% 47 BH109M SE272743.002 % 10 - 150% 45 Method: ME-(AU)-[ENV]AN433 **VOCs in Water** Units Parameter Sample Name Sample Number Criteria Recovery % Bromofluorobenzene (Surrogate) BH107M SE272743.001 % 40 - 130% 84 BH109M SE272743.002 40 - 130%

QD 241017

QR_241017

85

75

83

%

%

%

40 - 130%

40 - 130%

SE272743.003

SE272743.004

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OCs in Water (continued)				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	GW_QTS1	SE272743.005	%	40 - 130%	96
	GW_QTB1	SE272743.006	%	40 - 130%	81
d4-1,2-dichloroethane (Surrogate)	BH107M	SE272743.001	%	40 - 130%	93
	BH109M	SE272743.002	%	40 - 130%	91
	QD_241017	SE272743.003	%	40 - 130%	88
	QR_241017	SE272743.004	%	40 - 130%	89
	GW_QTS1	SE272743.005	%	40 - 130%	93
	GW_QTB1	SE272743.006	%	40 - 130%	85
d8-toluene (Surrogate)	BH107M	SE272743.001	%	40 - 130%	89
	BH109M	SE272743.002	%	40 - 130%	90
	QD_241017	SE272743.003	%	40 - 130%	95
	QR_241017	SE272743.004	%	40 - 130%	88
	GW_QTS1	SE272743.005	%	40 - 130%	89
	GW_QTB1	SE272743.006	%	40 - 130%	93
olatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH107M	SE272743.001	%	40 - 130%	84
	BH109M	SE272743.002	%	40 - 130%	85
	QD_241017	SE272743.003	%	40 - 130%	75
	QR_241017	SE272743.004	%	40 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH107M	SE272743.001	%	60 - 130%	93
	BH109M	SE272743.002	%	60 - 130%	91
	QD_241017	SE272743.003	%	60 - 130%	88
	QR_241017	SE272743.004	%	60 - 130%	89
d8-toluene (Surrogate)	BH107M	SE272743.001	%	40 - 130%	89
	BH109M	SE272743.002	%	40 - 130%	90
	QD_241017	SE272743.003	%	40 - 130%	95
	QR_241017	SE272743.004	%	40 - 130%	88

SE272743 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU	-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB327361.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

	,			
Sample Number	Parameter	Units	LOR	Result
LB327305.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	µg/L	0.1	<0.1
	Acenaphthene	µg/L	0.1	<0.1
	Fluorene	µg/L	0.1	<0.1
	Phenanthrene	µg/L	0.1	<0.1
	Anthracene	µg/L	0.1	<0.1
	Fluoranthene	µg/L	0.1	<0.1
	Pyrene	µg/L	0.1	<0.1
	Benzo(a)anthracene	µg/L	0.1	<0.1
	Chrysene	µg/L	0.1	<0.1
	Benzo(a)pyrene	µg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
	Dibenzo(ah)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogate	d5-nitrobenzene (Surrogate)	%	-	82
	2-fluorobiphenyl (Surrogate)	%	-	76
	d14-p-terphenyl (Surrogate)	%	-	80

and Polyfluomalkyl Substances (PFAS) in Aqueous Samples

r- and Polyfluoroalkyl Substances (Pf	FAS) in Aqueous Samples		Meth	od: ME-(AU)-[ENV]AN
ample Number	Parameter	Units	LOR	Result
3327347.001	Perfluorobutanoic acid (PFBA)	μg/L	0.05	<0.05
	Perfluoropentanoic acid (PFPeA)	μg/L	0.01	<0.01
	Perfluorohexanoic acid (PFHxA)	μg/L	0.01	<0.01
	Perfluoroheptanoic acid (PFHpA)	μg/L	0.01	<0.01
	Perfluorooctanoic acid (PFOA)	μg/L	0.01	<0.01
	Perfluorononanoic acid (PFNA)	μg/L	0.01	<0.01
	Perfluorodecanoic acid (PFDA)	μg/L	0.01	<0.01
	Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	<0.01
	Perfluorododecanoic acid (PFDoDA)	μg/L	0.01	<0.01
	Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01	<0.01
	Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01	<0.01
	Perfluoropropane sulfonic acid (PFPrS)	μg/L	0.01	<0.01
	Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01	<0.01
	Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01	<0.01
	Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01	<0.01
	Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01	<0.01
	Perfluorooctane sulfonic acid (PFOS)	μg/L	0.01	<0.01
	Perfluorononane sulfonic acid (PFNS)	μg/L	0.01	<0.01
	Perfluorodecane sulfonic acid (PFDS)	μg/L	0.01	<0.01
	1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)	μg/L	0.01	<0.01
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	μg/L	0.01	<0.01
	1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	μg/L	0.01	<0.01
	1H,1H,2H,2H-Perfluorododecane sulfonic acid (10:2 FTS)	μg/L	0.01	<0.01
	Perfluorooctane sulfonamide (FOSA)	μg/L	0.01	<0.01
	N-Methylperfluoroctane sulfonamide (N-MeFOSA)	μg/L	0.01	<0.01
	N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	μg/L	0.01	<0.01
	N-Methylperfluorooctanesulfonamidoacetic acid (N_MeFOSAA)	µg/L	0.05	<0.05
	N-Ethylperfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	µg/L	0.05	<0.05
	2-(N-Methylperfluorooctane sulfonamido)-ethanol (N-MeFOSE)	µg/L	0.05	<0.05
	2-(N-Ethylperfluorooctane sulfonamido)-ethanol (N-EtFOSE)	µg/L	0.05	<0.05
I Phenolics in Water			Meth	od: ME-(AU)-[ENV]A
nple Number	Parameter	Units	LOR	

SE272743 R0

Method: ME-(AU)-[ENV]AN318

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Phenolics in Water (continued) Method: Mi				
Sample Number	Parameter	Units	LOR	Result
LB327304.001	Total Phenols	mg/L	0.05	<0.05

Trace Metals (Dissolved) in Water by ICPMS

I race Metals (Dissolv	· · · ·				Da: ME-(AU)-[ENV]AN3
Sample Number		Parameter	Units	LOR	Result
LB327614.001		Arsenic	µg/L	1	<1
		Cadmium	µg/L	0.1	<0.1
		Chromium	μg/L	1	<1
		Copper	μg/L	1	<1
		Lead	μg/L	1	<1
		Nickel	μg/L	1	<1
		Zinc	μg/L	5	<5
LB327614.025		Arsenic	μg/L	1	<1
20027014.025		Cadmium	μg/L	0.1	<0.1
		Chromium		1	<1
			μg/L	1	<1
		Copper	μg/L		
		Lead	μg/L	1	<1
		Nickel	μg/L	1	<1
		Zinc	μg/L	5	<5
RH (Total Recoveral	ole Hydrocarbons) in Water			Metho	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
_B327305.001		TRH C10-C14	μg/L	50	<50
2027000.001		TRH C15-C28	μg/L	200	<200
		TRH C29-C36		200	<200
		TRH C23-C30	μg/L	200	<200
		1111037-040	µg/L		
OCs in Water				Metho	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
_B327582.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
	Ū.	1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)		5	<5
	Halogenated Aliphatics	Chloromethane	μg/L	5	<5
			μg/L		
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane		1	<1
			μg/L	· · · · · · · · · · · · · · · · · · ·	
		1,1-dichloroethene	μg/L	0.5	<0.5
				5	<0.5 <5
		1,1-dichloroethene	μg/L		
		1,1-dichloroethene Iodomethane	μg/L μg/L	5	<5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride)	µg/L µg/L µg/L	5 5	<5 <5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride	µg/L µg/L µg/L µg/L	5 5 2	<5 <5 <2
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene	µg/L µg/L µg/L µg/L µg/L	5 5 2 0.5	<5 <5 <2 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5	<5 <5 <2 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-tichloropthane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-trichloropthane 1,1-tichloropthane Carbon tetrachloride	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloroethane 1,1-dichloropethane 1,1-dichloropethane 1,1-dichloropethane 1,1-dichloropethane 1,1-dichloropethane 1,1-dichloropethane 1,1-dichloropethane 1,1-dichloropethane Dibromomethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloropthane 1,1-trichloropthane 1,1-dichloropthane 1,1-dichloropthane 1,1-trichloropthane Trichloroethane Trichloroethane Trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropthane 1,1-trichloroethane 1,1-trichloropthane 1,1-dichloroppene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-trichloroethane Trichloroethane Trichloroethane 1,1-trichloroethane 1,2-trichloroethane 1,3-dichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloropene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE)	μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,1-trichloroethane 1,1-trichloroppene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane	μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene lodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloropene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE)	μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		1,1-dichloroethene Iodomethane Dichloromethane (Methylene chloride) Allyl chloride trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene Bromochloromethane 1,2-dichloroethene 1,1-trichloroethane 1,1-trichloroppene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane	μg/L μg/L	5 5 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<5 <5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

SE272743 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Bromofluorobenzene (Surrogate)

Somple Number		Deremeter	Units	LOR	Booult
Sample Number	Lielesensted Aliebeti	Parameter			Result
.B327582.001	Halogenated Aliphatics	1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	µg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	µg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	µg/L	0.5	<0.5
		1,2,3-trichlorobenzene	µg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		o-xylene	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	µg/L	0.5	<0.5
		1,2,4-trimethylbenzene	µg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	μg/L	0.5	<1
		Vinyl acetate*	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	µg/L	5	<5
		2-hexanone (MBK)	µg/L	5	<5
	Polycyclic VOCs	Naphthalene (VOC)*	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	µg/L	2	<2
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	97
	Trihalomethanes	Chloroform (THM)	µg/L	0.5	<0.5
		Bromodichloromethane (THM)	µg/L	0.5	<0.5
		Dibromochloromethane (THM)	µg/L	0.5	<0.5
		Bromoform (THM)	µg/L	0.5	<0.5
latile Petroleum Hyd	rocarbons in Water			Meth	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B327582.001		TRH C6-C9	μg/L	40	<40
2021002.001	Surrogates	d4-1,2-dichloroethane (Surrogate)	pg/L%	40	91
	Junoyates	d8-toluene (Surrogate)	%		85
			/0		00

97

%

Method: ME-(AU)-IENVIAN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Water

	Aromatic Hydrocarb						Moulou. MIC-(AC)-Irria a bara-
Original	Duplicate		Parameter	Units	LOR	Original Dupli	cate Criteria %	6 RPD %
E272741.001	LB327305.023		Naphthalene	μg/L	0.1	0.00836774080.00845	66288 200	0
			2-methylnaphthalene	µg/L	0.1	0.00119601150.00208	306166 200	0
			1-methylnaphthalene	µg/L	0.1	0.00121443710.00146	640199 200	0
			Acenaphthylene	μg/L	0.1	0.00188934070.00284	71601 200	0
			Acenaphthene	μg/L	0.1	0.00141311820.00230	31573 200	0
			Fluorene	μg/L	0.1	0.00072691820.00092	206130 200	0
			Phenanthrene	μg/L	0.1	0.00652695310.00824	23026 200	0
			Anthracene	μg/L	0.1	0.00276633810.00795	68888 200	0
			Fluoranthene	µg/L	0.1	0.00515863790.00814	75297 200	0
			Pyrene	µg/L	0.1	0.01040115470.01281	21117 200	0
			Benzo(a)anthracene	µg/L	0.1	0.01381567580.01511	27553 200	0
			Chrysene	µg/L	0.1	0.00222341520.00388	386937 200	0
			Benzo(b&j)fluoranthene	µg/L	0.1	0.00199949780.00418	346460 200	0
			Benzo(k)fluoranthene	µg/L	0.1	0.00117475640.00361	28574 200	0
			Benzo(a)pyrene	µg/L	0.1	0 0.00438	395106 200	0
			Indeno(1,2,3-cd)pyrene	μg/L	0.1	0 0.00099	994143 200	0
			Dibenzo(ah)anthracene	µg/L	0.1	0.0001377020 0	200	0
			Benzo(ghi)perylene	µg/L	0.1	3.52196972684.54726	641037 200	0
		Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.40522328750.34423	393316 30	16
			2-fluorobiphenyl (Surrogate)	µg/L	-	0.34721727790.29994	60181 30	15
			d14-p-terphenyl (Surrogate)	μg/L	-	0.40345792820.38451	43683 30	5
tal Phenolics in	Water						Method: ME-(AU	J)-[ENV]AI
Driginal	Duplicate		Parameter	Units	LOR	Original Dupli	cate Criteria %	6 RPD

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272741.001	LB327304.014	Total Phenols	mg/L	0.05	<0.05	<0.05	200	0
SE272755.001	LB327304.021	Total Phenols	mg/L	0.05	<0.05	<0.05	200	0

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272754.002	LB327614.014	Arsenic	µg/L	1	0.463	0.443	200	0
		Cadmium	µg/L	0.1	0.045	0.061	200	0
		Chromium	µg/L	1	0.688	0.692	160	0
		Copper	µg/L	1	0.782	0.653	154	0
		Lead	µg/L	1	1.598	1.614	77	1
		Nickel	µg/L	1	3.63	3.728	42	3
		Zinc	µg/L	5	36.169	37.928	28	5
SE272757.004	LB327614.028	Arsenic	µg/L	1	0.434	0.366	200	0
		Cadmium	µg/L	0.1	0.047	0.032	200	0
		Chromium	µg/L	1	0.529	0.433	200	0
		Copper	µg/L	1	4.319	3.953	39	9
		Lead	µg/L	1	5.249	4.866	35	8
		Nickel	µg/L	1	1.706	1.59	76	7
		Zinc	µg/L	5	20.464	18.503	41	10
SE272890.002	LB327614.035	Arsenic	µg/L	1	0.581	0.618	182	0
		Cadmium	µg/L	0.1	0.004	0.01	200	0
		Chromium	µg/L	1	1.919	1.876	68	2
		Copper	µg/L	1	3.128	3.013	48	4
		Lead	µg/L	1	0.14	0.094	200	0
		Nickel	µg/L	1	0.653	0.632	171	0
		Zinc	µg/L	5	10.394	10.084	64	3
TRH (Total Recov	rerable Hydrocarbons) in Water					Meth	od: ME-(AU)-	ENVJAN40
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272741.001	LB327305.023	TRH C10-C14	µg/L	50	0	0	200	0
		TRH C15-C28	μg/L	200	0	0	200	0

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

200

200

320

60

60

500

0

0

0

0

-0.0468477247

0

0

0

0

0

0

0

200

200

200

200

200

200

TRH C29-C36

TRH C37-C40

TRH C10-C40

TRH >C10-C16

TRH >C16-C34 (F3)

TRH >C10-C16 - Naphthalene (F2)

TRH F Bands

0

0

0

0

0

0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Dunlieste		Devenuetor	11-24-	LOD	Original	Dunkart	Cuitouia M	
Original	Duplicate	TRUES	Parameter	Units	LOR	Original		Criteria %	
SE272741.001	LB327305.023	TRH F Bands	TRH >C34-C40 (F4)	µg/L	500	0	0	200	0
SE272757.005	LB327305.022		TRH C10-C14	μg/L	50	24.875	24.275	200	0
			TRH C15-C28	µg/L	200	116.025	136.075	189	0
			TRH C29-C36	μg/L	200	16.9	19.175	200	0
			TRH C37-C40	µg/L	200	6.325	6.375	200	0
			TRH C10-C40	µg/L	320	164.125	185.9	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	110.95	129.35	80	15
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	110.95	129.35	80	15
			TRH >C16-C34 (F3)	µg/L	500	36.7	41.475	200	0
			TRH >C34-C40 (F4)	µg/L	500	12.15	12	200	0
OCs in Water									
								od: ME-(AU)	<u> </u>
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272694.002	LB327582.023	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	200	0
			1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	200	0
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	200	0
			trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	200	0
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	200	0
		Aliphatics	Chloromethane	μg/L	5	<5	<5	200	0
			Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	200	0
			Bromomethane	μg/L	10	<10	<10	200	0
			Chloroethane	μg/L	5	<5	<5	200	0
			Trichlorofluoromethane	µg/L	1	<1	<1	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	200	0
			lodomethane	μg/L	5	<5	<5	200	0
			Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	200	0
			Allyl chloride	µg/L	2	<2	<2	200	0
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	200	0
			1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	200	0
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	200	0
			Bromochloromethane	μg/L	0.5	<0.5	<0.5	200	0
			1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	200	0
									0
			1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	200	
			1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	200	0
			Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	200	0
			Dibromomethane	µg/L	0.5	<0.5	<0.5	200	0
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	200	0
			1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	200	0
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	200	0
			trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane		0.5	<0.5	<0.5	200	0
				μg/L					
			Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	200	0
		Halogenated	Chlorobenzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatics	Bromobenzene	µg/L	0.5	<0.5	<0.5	200	0
			2-chlorotoluene	µg/L	0.5	<0.5	<0.5	200	0
			4-chlorotoluene	µg/L	0.5	<0.5	<0.5	200	0
			1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	200	0
			1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
		Monocyclic	Benzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE272694.002	LB327582.023	Monocyclic	o-xylene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	<0.5	200	0
			n-propylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			tert-butylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			sec-butylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	200	0
			n-butylbenzene	µg/L	0.5	<0.5	<0.5	200	0
		Nitrogenous	Acrylonitrile	µg/L	0.5	<0.5	<0.5	200	0
		Compounds	2-nitropropane	μg/L	100	<100	<100	200	0
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	0.5	<0.5	<0.5	200	0
			Vinyl acetate*	µg/L	10	<10	<10	200	0
			MEK (2-butanone)	µg/L	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	200	0
			2-hexanone (MBK)	μg/L	5	<5	<5	200	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	<0.5	200	0
		Sulphonated	Carbon disulfide	μg/L	2	<2	<2	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.2	8.9	30	3
			d8-toluene (Surrogate)	μg/L	-	9.3	8.6	30	8
			Bromofluorobenzene (Surrogate)	μg/L	-	8.1	7.9	30	2
		Totals	Total BTEX	µg/L	3	<3	<3	200	0
			Total VOC	μg/L	10	<10	<10	200	0
		Trihalomethan	Chloroform (THM)	μg/L	0.5	<0.5	<0.5	200	0
		es	Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	200	0
			Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	<0.5	200	0
SE272710.001	LB327582.026	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	μg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	8.2	9.3	30	12
			d8-toluene (Surrogate)	μg/L	-	9.3	9.6	30	3
			Bromofluorobenzene (Surrogate)	μg/L	-	8.1	8.1	30	0
		Totals	Total BTEX	μg/L	3	<3	<3	200	0
olatile Petroleum	Hydrocarbons in Wa	ater					Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD ^o
SE272694.002	LB327582.025		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.2	8.9	30	3
			d8-toluene (Surrogate)	ua/L	-	9.3	8.6	30	8

			111100 00	P9/-	40	-+0	-+0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.2	8.9	30	3
			d8-toluene (Surrogate)	µg/L	-	9.3	8.6	30	8
			Bromofluorobenzene (Surrogate)	µg/L	-	8.1	7.9	30	2
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
SE272710.001	LB327582.028		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	8.2	9.3	30	12
			d8-toluene (Surrogate)	μg/L	-	9.3	9.6	30	3
			Bromofluorobenzene (Surrogate)	µg/L	-	8.1	8.1	30	0
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydroc	•					-	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB327305.002	Naphthalene	μg/L	0.1	27	40	60 - 140	68
	Acenaphthylene	μg/L	0.1	29	40	60 - 140	72
	Acenaphthene	μg/L	0.1	29	40	60 - 140	74
	Phenanthrene	μg/L	0.1	29	40	60 - 140	72
	Anthracene	μg/L	0.1	29	40	60 - 140	72
	Fluoranthene	µg/L	0.1	28	40	60 - 140	71
	Pyrene	µg/L	0.1	28	40	60 - 140	70
	Benzo(a)pyrene	μg/L	0.1	29	40	60 - 140	73
Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.4	0.5	40 - 130	78
	2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	76
	d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	80
Per- and Polyfluoroalkyl Substance		μg/L	-	0.4		40 - 130 Nethod: ME-(A l	
Per- and Polyfluoroalkyl Substance Sample Number		μg/L Units	LOR	0.4 Result			U)-[ENV]AN4(
	es (PFAS) in Aqueous Samples	· · ·			N	Method: ME-(Al	
Sample Number	es (PFAS) in Aqueous Samples Parameter	Units	LOR	Result	Expected	Method: ME-(Al Criteria %	U)-[ENV]AN40 Recovery %
Sample Number	es (PFAS) in Aqueous Samples Parameter Perfluoroheptanoic acid (PFHpA)	Units μg/L	LOR 0.01	Result 0.17	Expected 0.2	Method: ME-(Al Criteria % 40 - 160	U)-[ENV]AN40 Recovery % 86
Sample Number	es (PFAS) in Aqueous Samples Parameter Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)	Units µg/L µg/L	LOR 0.01 0.01	Result 0.17 0.19	Expected 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160	U)-[ENV]AN40 Recovery % 86 97
Sample Number	es (PFAS) in Aqueous Samples Parameter Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)	Units µg/L µg/L µg/L	LOR 0.01 0.01 0.01	Result 0.17 0.19 0.21	Expected 0.2 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160 40 - 160	U)-[ENV]AN40 Recovery % 86 97 105
Sample Number	Parameter Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFHpA) Perfluorononanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA)	Units µg/L µg/L µg/L µg/L	LOR 0.01 0.01 0.01 0.01	Result 0.17 0.19 0.21 0.21	Expected 0.2 0.2 0.2 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160 40 - 160 40 - 160	U)-[ENV]AN40 Recovery % 86 97 105 103
Sample Number	Parameter Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUA)	Units µg/L µg/L µg/L µg/L µg/L	LOR 0.01 0.01 0.01 0.01 0.01	Result 0.17 0.19 0.21 0.21 0.19	Expected 0.2 0.2 0.2 0.2 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160	U)-[ENV]AN40 Recovery % 86 97 105 103 97
Sample Number	Berfluorondecanoic acid (PFUDA) Perfluorondecanoic acid (PFUDA) Perfluoronanoic acid (PFUDA) Perfluoronanoic acid (PFUDA) Perfluorondecanoic acid (PFUDA) Perfluorondecanoic acid (PFUDA) Perfluorondecanoic acid (PFUDA)	Units μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.01 0.01 0.01 0.01 0.01 0.01	Result 0.17 0.19 0.21 0.21 0.21 0.21	Expected 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160	U)-[ENV]AN4(Recovery % 86 97 105 103 97 113
Sample Number	Base (PFAS) in Aqueous Samples Parameter Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorotetradecanoic acid (PFUDA) Perfluoroctanoic acid (PFUDA) Perfluorotetradecanoic acid (PFUDA) Perfluoroctane sulfonic acid (PFOS)	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Result 0.17 0.19 0.21 0.21 0.19 0.23 0.22	Expected 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160	U)-[ENV]AN4(Recovery % 86 97 105 103 97 113 108 93
Sample Number LB327347.002	Base (PFAS) in Aqueous Samples Parameter Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorotetradecanoic acid (PFUDA) Perfluoroctanoic acid (PFUDA) Perfluorotetradecanoic acid (PFUDA) Perfluoroctane sulfonic acid (PFOS)	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Result 0.17 0.19 0.21 0.21 0.19 0.23 0.22	Expected 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method: ME-(Al Criteria % 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160 40 - 160	U)-[ENV]AN4(Recovery % 86 97 105 103 97 113 108 93

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB327614.002	Arsenic	μg/L	1	22	20	80 - 120	108
	Cadmium	µg/L	0.1	22	20	80 - 120	110
	Chromium	μg/L	1	22	20	80 - 120	108
	Copper	μg/L	1	21	20	80 - 120	105
	Lead	μg/L	1	21	20	80 - 120	107
	Nickel	μg/L	1	21	20	80 - 120	106
	Zinc	μg/L	5	23	20	80 - 120	116
LB327614.026	Arsenic	μg/L	1	21	20	80 - 120	105
	Cadmium	µg/L	0.1	21	20	80 - 120	107
	Chromium	μg/L	1	20	20	80 - 120	102
	Copper	μg/L	1	20	20	80 - 120	99
	Lead	µg/L	1	21	20	80 - 120	103
	Nickel	μg/L	1	20	20	80 - 120	100
	Zinc	µg/L	5	22	20	80 - 120	112

TRH (Total Recoverable Hydrocarbons) in Water

TRH (Total Recover	rable Hydrocarbo	ns) in Water				N	lethod: ME-(A	U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB327305.002		TRH C10-C14	µg/L	50	1200	1200	60 - 140	96
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	103
		TRH C29-C36	µg/L	200	1300	1200	60 - 140	105
	TRH F Bands	TRH >C10-C16	µg/L	60	1200	1200	60 - 140	102
		TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	104
		TRH >C34-C40 (F4)	µg/L	500	630	600	60 - 140	104

VOCs in Water Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Result Expected Criteria % Recovery % LB327582.002 Halogenated 1,1-dichloroethene µg/L 0.5 55 45.45 60 - 140 122 Aliphatics 1,2-dichloroethane µg/L 0.5 54 45.45 60 - 140 119 63 Trichloroethene (Trichloroethylene,TCE) 0.5 45.45 60 - 140 138 µg/L 45.45 60 - 140 Halogenated Chlorobenzene µg/L 0.5 59 130 Monocyclic Benzene µg/L 0.5 50 45.45 60 - 140 111 Aromatic 0.5 58 45.45 60 - 140 127 Toluene µg/L

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433 Sample Number Expected Criteria % Recovery % Parameter Units LOR Result LB327582.002 60 - 140 Monocyclic 0.5 59 45.45 131 Ethylbenzene µg/L Aromatic m/p-xylene µg/L 1 110 90.9 60 - 140 121 µg/L 0.5 55 45.45 60 - 140 121 o-xylene Surrogates d4-1,2-dichloroethane (Surrogate) µg/L 8.6 10 60 - 140 86 d8-toluene (Surrogate) µg/L 85 10 70 - 130 85 Bromofluorobenzene (Surrogate) µg/L 10.8 10 70 - 130 108 Trihalomethan Chloroform (THM) 60 - 140 0.5 54 45.45 120 µg/L Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Sample Number LOR Result Expected Criteria % Recovery % Parameter LB327582.002 TRH C6-C10 946.63 µg/L 50 880 60 - 140 93 818.71 TRH C6-C9 700 85 µg/L 40 60 - 140 Surrogates d4-1,2-dichloroethane (Surrogate) µg/L 8.6 10 60 - 140 86 -70 - 130 85 d8-toluene (Surrogate) 8.5 10 µg/L -Bromofluorobenzene (Surrogate) 10.8 10 70 - 130 108 µg/L -VPH F Bands TRH C6-C10 minus BTEX (F1) µg/L 50 550 639.67 60 - 140 86

MATRIX SPIKES

SE272743 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312							
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272694.001	LB327361.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	92

Total Phenolics in Water

Total Phenolics in	Water					Met	hod: ME-(Al	J)-[ENV]AN295
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272523.001	LB327304.004	Total Phenols	mg/L	0.05	0.21	<0.05	0.2	104

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dis	solved) in Water by ICPMS					Meth	nod: ME-(AU)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE272760.007	LB327614.030	Arsenic	μg/L	1	22	-0.038	20	111
		Cadmium	μg/L	0.1	22	0.01	20	112
		Chromium	μg/L	1	22	-0.042	20	109
		Copper	μg/L	1	21	0.005	20	107
		Lead	μg/L	1	22	0	20	108
		Nickel	μg/L	1	21	-0.094	20	107
		Zinc	μg/L	5	24	0.013	20	120

VOCs in Water

VOCs in Water							м	ethod: ME-(AU)-[ENV]A
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%
SE272743.003	LB327582.025	Monocyclic	Benzene	μg/L	0.5	<0.5	45.45	116
		Aromatic	Toluene	μg/L	0.5	<0.5	45.45	122
			Ethylbenzene	μg/L	0.5	<0.5	45.45	113
			m/p-xylene	μg/L	1	<1	90.9	111
			o-xylene	μg/L	0.5	<0.5	45.45	111
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	8.8	-	89
			d8-toluene (Surrogate)	μg/L	-	9.5	-	90
			Bromofluorobenzene (Surrogate)	µg/L	-	7.5	-	95
		Totals	Total BTEX	µg/L	3	<3	-	-

Volatile Petroleum Hydrocarbons in Water

/olatile Petroleu	m Hydrocarbons in W	/ater					Me	ethod: ME-(AU)-[
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE272743.003	LB327582.027		TRH C6-C10	µg/L	50	<50	946.63	94
			TRH C6-C9	μg/L	40	<40	818.71	102
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	8.8	-	89
			d8-toluene (Surrogate)	μg/L	-	9.5	-	90
			Bromofluorobenzene (Surrogate)	μg/L	-	7.5	-	95
		VPH F	Benzene (F0)	μg/L	0.5	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	639.67	90

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	ILS
Contact Client Address	Joel Heininger EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Shane McDermott SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	joel.heininger@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25635 15 Hilwa St & 890-895 Woodville R	SGS Reference	SE273394 R0
Order Number	E25635	Date Received	31 Oct 2024
Samples	3	Date Reported	05 Nov 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

TRH (Total Recoverable Hydrocarbons) in Soil

3 items

Date documentation received 31/10/2024 Samples received in good order Samples received without headspace Yes Sample temperature upon receipt	Yes 13.5°C	
	13 5°C	
	13.3 0	
Sample container provider SGS Turnaround time requested	Three Days	
Samples received in correct containers Yes Sufficient sample for analysis	Yes	
Sample cooling method Ice Bricks Samples clearly labelled	Yes	
Complete documentation received Yes		

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia Australia

www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Moisture Content Method: ME-(AU)-[ENV]AN002												
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH114_2.5-2.6	SE273394.001	LB328526	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	05 Nov 2024	04 Nov 2024				
BH115_2.4-2.5	SE273394.002	LB328526	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	05 Nov 2024	04 Nov 2024				
BH115_2.5-2.6	SE273394.003	LB328526	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	05 Nov 2024	04 Nov 2024				
Total Recoverable Elemen	ts in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN32				
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH114_2.5-2.6	SE273394.001	LB328513	30 Oct 2024	31 Oct 2024	28 Apr 2025	31 Oct 2024	28 Apr 2025	04 Nov 2024				
BH115_2.4-2.5	SE273394.002	LB328513	30 Oct 2024	31 Oct 2024	28 Apr 2025	31 Oct 2024	28 Apr 2025	04 Nov 2024				
BH115_2.5-2.6	SE273394.003	LB328513	30 Oct 2024	31 Oct 2024	28 Apr 2025	31 Oct 2024	28 Apr 2025	04 Nov 2024				
TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403												
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH114_2.5-2.6	SE273394.001	LB328501	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	10 Dec 2024	04 Nov 2024				
BH115_2.4-2.5	SE273394.002	LB328501	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	10 Dec 2024	04 Nov 2024				
BH115_2.5-2.6	SE273394.003	LB328501	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	10 Dec 2024	04 Nov 2024				
VOC's in Soil							Method:	ME-(AU)-[ENV]AN43				
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH114_2.5-2.6	SE273394.001	LB328523	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	13 Nov 2024	05 Nov 2024				
BH115_2.4-2.5	SE273394.002	LB328523	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	13 Nov 2024	05 Nov 2024				
BH115_2.5-2.6	SE273394.003	LB328523	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	13 Nov 2024	05 Nov 2024				
Volatile Petroleum Hydroca	arbons in Soil						Method:	ME-(AU)-[ENV]AN43				
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH114_2.5-2.6	SE273394.001	LB328523	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	13 Nov 2024	05 Nov 2024				
BH115_2.4-2.5	SE273394.002	LB328523	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	13 Nov 2024	05 Nov 2024				
BH115_2.5-2.6	SE273394.003	LB328523	30 Oct 2024	31 Oct 2024	13 Nov 2024	31 Oct 2024	13 Nov 2024	05 Nov 2024				

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C's in Soil				Werlog. W	E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	BH114_2.5-2.6	SE273394.001	%	60 - 130%	107
	BH115_2.4-2.5	SE273394.002	%	60 - 130%	113
	BH115_2.5-2.6	SE273394.003	%	60 - 130%	111
I4-1,2-dichloroethane (Surrogate)	BH114_2.5-2.6	SE273394.001	%	60 - 130%	91
	BH115_2.4-2.5	SE273394.002	%	60 - 130%	99
	BH115_2.5-2.6	SE273394.003	%	60 - 130%	95
l8-toluene (Surrogate)	BH114_2.5-2.6	SE273394.001	%	60 - 130%	96
	BH115_2.4-2.5	SE273394.002	%	60 - 130%	101
	BH115_2.5-2.6	SE273394.003	%	60 - 130%	98
latile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AI
· ·	Sample Name	Sample Number	Units	Method: M Criteria	
latile Petroleum Hydrocarbons in Soli arameter Bromofluorobenzene (Surrogate)	Sample Name BH114_2.5-2.6	Sample Number SE273394.001	Units %		
arameter				Criteria	Recovery
arameter	BH114_2.5-2.6	SE273394.001	%	Criteria 60 - 130%	Recovery 107
arameter	BH114_2.5-2.6 BH115_2.4-2.5	SE273394.001 SE273394.002	%	Criteria 60 - 130% 60 - 130%	Recovery 107 113
arameter Bromofluorobenzene (Surrogate)	BH114_2.5-2.6 BH115_2.4-2.5 BH115_2.5-2.6	SE273394.001 SE273394.002 SE273394.003	% %	Criteria 60 - 130% 60 - 130% 60 - 130%	Recovery 107 113 111
arameter romofluorobenzene (Surrogate)	BH114_2.5-2.6 BH115_2.4-2.5 BH115_2.5-2.6 BH114_2.5-2.6	SE273394.001 SE273394.002 SE273394.003 SE273394.001	% % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery 107 113 111 91
arameter romofluorobenzene (Surrogate) 4-1,2-dichloroethane (Surrogate)	BH114_2.5-2.6 BH115_2.4-2.5 BH115_2.5-2.6 BH114_2.5-2.6 BH115_2.4-2.5	SE273394.001 SE273394.002 SE273394.003 SE273394.001 SE273394.002	% % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	Recovery 107 113 111 91 99
arameter Bromofluorobenzene (Surrogate)	BH114_2.5-2.6 BH115_2.4-2.5 BH115_2.5-2.6 BH114_2.5-2.6 BH115_2.4-2.5 BH115_2.4-2.5 BH115_2.5-2.6	SE273394.001 SE273394.002 SE273394.003 SE273394.001 SE273394.002 SE273394.003	% % % %	Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	113 111 91 99 95

METHOD BLANKS

SE273394 R0

Method: ME-(AU)-[ENV]AN403

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-1						
Sample Number	Parameter	Units	LOR	Result		
LB328513.001	Lead, Pb	mg/kg	1	<1		

TRH (Total Recoverable Hydrocarbons) in Soil

Sample Number		Parameter	Units	LOR	Result
LB328501.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
VOC's in Soil				Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB328523.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	105
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	105
	Totals	Total BTEX*	mg/kg	0.6	<0.6
/olatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB328523.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	105

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Moisture Content Method: ME-(AU)-[ENV]AN							
Original	Duplicate	Parameter	Units LOR	Original	Duplicate	Criteria %	RPD %
SE273233.038	LB328526.011	% Moisture	%w/w 1	13.549039433	74.2137096774	37	5
SE273394.003	LB328526.022	% Moisture	%w/w 1	19.1	20.0	35	4

Total Recoverable I	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(-(AU)-[ENV]AI	N040/AN320
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE273394.003	LB328513.008	Lead, Pb	mg/kg	1	18	17	36	3

TRH (Total Recoverable Hydrocarbons) in Soil

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE273233.038	LB328501.014		TRH C10-C14	mg/kg	20	0.988850522	51.3774917744	200	0
			TRH C15-C28	mg/kg	45	2.860767558	32.2605582877	200	0
			TRH C29-C36	mg/kg	45	4.854566170	24.4084336088	200	0
			TRH C37-C40	mg/kg	100	0.351846813	80.3058537662	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	1.011847046	31.4464813458	200	0
		TRH >C16-C34 (F3)	mg/kg	90	7.319793519	56.2136607257	200	0	
			TRH >C34-C40 (F4)	mg/kg	120	0.717491541	90.5381186564	200	0
SE273394.003 LB328501.024	LB328501.024		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0

Duplicate Criteria % RPD %	Meth	od: ME-(AU)-	ENVJAN433
Duplicate Criteria % RPD %	Duplicate	Criteria %	RPD %

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE273233.038	LB328523.015	Monocyclic	Benzene	mg/kg	0.1	0.0030021007	70.0009416951	200	0
		Aromatic	Toluene	mg/kg	0.1	0.0136153074	10.0118226709	200	0
			Ethylbenzene	mg/kg	0.1	0.0027512879	0.0007298263	200	0
			m/p-xylene	mg/kg	0.2	0.0063734743	30.0021556312	200	0
			o-xylene	mg/kg	0.1	0.0026985270	0.0008762420	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	0.0023340386	60.0019902346	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.979744131	110.0744436097	50	1
			d8-toluene (Surrogate)	mg/kg	-	10.177539825	90.3114815086	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.724287918	30.2186345054	50	14
		Totals	Total BTEX*	mg/kg	0.6	0	0	200	0
			Total Xylenes*	mg/kg	0.3	0.0090720013	30.0030318732	200	0
SE273394.003	LB328523.030	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.5	10.5	50	10
			d8-toluene (Surrogate)	mg/kg	-	9.8	10.9	50	11
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.1	10.3	50	7
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
Volatile Petroleum	Hydrocarbons in Soil						Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE273394.003	LB328523.030		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.5	10.5	50	10

Method: ME-(ALI)-IENVIAN433

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Volatile Petroleum Hydrocarbons in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE273394.003	LB328523.030	Surrogates	d8-toluene (Surrogate)	mg/kg	-	9.8	10.9	50	11
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.1	10.3	50	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Method: ME-(AU)-[ENV]AN403

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN3								
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB328513.002	Lead, Pb	mg/kg	1	92	89.9	80 - 120	103	

TRH (Total Recoverable Hydrocarbons) in Soil

· · · · · · · · · · · · · · · · · · ·	•	·					•	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB328501.002		TRH C10-C14	mg/kg	20	41	40	60 - 140	103
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	86
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	90
	TRH F Bands	TRH >C10-C16	mg/kg	25	39	40	60 - 140	99
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	86
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	91
VOC's in Soil						N	lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB328523.002	Monocyclic	Benzene	mg/kg	0.1	5.3	5	60 - 140	106
	Aromatic	Toluene	mg/kg	0.1	5.1	5	60 - 140	102
		Ethylbenzene	mg/kg	0.1	5.2	5	60 - 140	103
		m/p-xylene	mg/kg	0.2	9.9	10	60 - 140	99
		o-xylene	mg/kg	0.1	5.2	5	60 - 140	105
Volatile Petroleum	Hydrocarbons in S	l				N	lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB328523.002		TRH C6-C10	mg/kg	25	84	92.5	60 - 140	91
		TRH C6-C9	mg/kg	20	74	80	60 - 140	93
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	54	62.5	60 - 140	86

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE273233.029	LB328501.004		TRH C10-C14	mg/kg	20	45	2.37540188836	40	106
02270200.020	22020001.001		TRH C15-C28	mg/kg	45	180	24.83945203621	40	389 (9)
			TRH C29-C36	mg/kg	45	130	27.92375566230	40	244 (9)
			TRH C37-C40	mg/kg	100	<100	7.68635425131	_	
			TRH C10-C36 Total	mg/kg	110	350	0	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	300	0	-	-
		TRH F	TRH >C10-C16	mg/kg	25	47	2.97971156642	40	109
		Bands	TRH >C16-C34 (F3)	mg/kg	90	250	47.47782228349	40	507 ⑨
			TRH >C34-C40 (F4)	mg/kg	120	<120	12.43483376005	-	-
<mark>OC's in Soil</mark> QC Sample	Sample Numbe	ar	Parameter	Units	LOR	Result	Metho Original	<mark>od: ME-(AL</mark> Spike)-[ENV]AN Recover
SE273233.029	LB328523.004	Monocyclic	Benzene	mg/kg	0.1	5.7	0.01767720126	5	114
02270200.020	20020020.004	Aromatic	Toluene	mg/kg	0.1	5.5	0.03177384947	5	110
			Ethylbenzene	mg/kg	0.1	5.8	0.02501550033	5	115
			m/p-xylene	mg/kg	0.2	11	0.05420343230	10	110
			o-xylene	mg/kg	0.1	5.8	0.02776952112	5	116
							0.00758853606	-	-
		Polycyclic	Naphthalene (VOC)*		0.1	< 0.1	0.00730033000		
		Polycyclic Surrogates		mg/kg mg/kg	0.1	<0.1 10.4	10.06646552738	-	104
			Naphthalene (VOC)*	mg/kg					104 105
			Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg	-	10.4	10.06646552738	-	
			Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg	-	10.4 10.5	10.06646552738 10.33530266796	-	105

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Appendix K – QA/QC Assessment

Quality Assurance / Quality Control Program

Quality assurance comprises an assessment of the reliability of the field procedures and laboratory results against standard industry practices and the SAQP. A summary of the project QA/QC measures incorporated into this DSI is presented in **Table K-1**.

|--|

Task	Description	Project
Field QA/QC		
General	Work was to be undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were collected directly from the augers. Soil samples were placed in 250 gram glass jars and plastic bags, which were filled to minimise headspace, and sealed using Teflon-coated lids. Groundwater samples were obtained using sample bottles/vials provided by the laboratory.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes
Soil Screening with PID	The PID was serviced and calibrated as per manufacturer requirements.	Yes
Equipment Decontamination	Sampling equipment to be decontaminated after the collection of each soil sample by washing with phosphate-free detergent and potable water, followed by a final distilled water rinse. One rinsate blank would be collected and analysed for the primary contaminants. All results should be non-detect.	Yes Two rinsate samples were collected during this DSI. One was collected during the soil investigation on 10 October 2024 and the other was collected during the groundwater monitoring event on 17 October 2024. All results were reported as below the detection limits, except for a minor exceedance in the rinsate collected during groundwater monitoring event (TRH – F2 marginally above PQLs).
Transport	Samples stored in a chilled cooler box and transported to the laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation and transport duration.	Yes
Trip Blanks	Trip blank samples were to be prepared and analysed by the primary laboratory for BTEX. Analytical results to be below the laboratory LOR, indicating satisfactory sample transport and handling conditions were achieved.	Two trip blank samples prepared by the primary laboratory were analysed for BTEX during soil and groundwater testing. All results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved (i.e. no cross- contamination of volatiles during sample transport and subsequent handling).

Task	Description	Project
Trip Spikes	Trip spike samples were to be prepared and analysed by the primary laboratory for BTEX. Analytical results to be within 80- 120% recovery, indicating satisfactory sample transport and handling conditions were achieved.	Two trip spike samples prepared by the primary laboratory were analysed for BTEX during soil and groundwater testing. All results were within the recovery acceptance levels, indicating that satisfactory sample transport and handling conditions were achieved (i.e. no loss of volatiles during sample transport and subsequent handling).
Duplicates	 Field duplicate samples were to be analysed as follows (NEPC, 2013): intra-laboratory duplicates at a rate of 1 in 20 primary samples; and inter-laboratory duplicates at a rate of 1 in 20 primary samples. Field and laboratory acceptable limits between 30-50% RPD as stated by AS4482.1–2005. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered. Non-compliance is to be documented in the report and the sample re-analysed or a higher level conservatively adopted. 	The required sampling density of 1 per 20 duplicated primary samples was achieved and sufficient for the investigation. Laboratory duplicates prepared and analysed. A few non-conformances were observed likely caused by heterogeneity in soil samples with negligible effects on data use for interpretative purposes. Field QC samples and calculated RPD values are presented in Table K-5 . Copies of laboratory reports are included in Appendix I .
Laboratory QA/C	<u>2C</u>	
Laboratory Analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs. Appropriate detection limits were used for the analyses to be undertaken.	Yes SGS - primary laboratory Envirolab - secondary laboratory Laboratory QA/QC analyses are included in Appendix J . Practical Quantitation Limits for all tested parameters during the DSI are presented
		in laboratory analytical reports in Appendix I .
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	Assessment of holding times has been undertaken by the laboratory.

Task	Description	Project
Method Blanks	A method blank contains the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criterion aims to find no detectable contamination in the reagents. Each analysis procedure should be subject to a method blank analysis. The results of each should indicate that contaminants were not detected.	Yes
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub-samples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra- laboratory duplicates should be performed at a frequency of 1 per 10 samples.	The Laboratory duplicate samples for the analysis batches showed most calculated RPDs that were within acceptable ranges. Exceptions are noted to be: • SE 272387.010 • Fluoranthene (42%) • Pyrene (42%) • Carcinogenic PAHs, BaP TEQ <lor=0* (35%)<br="">• Carcinogenic PAHs, BaP TEQ <lor=lor (35%)<br="" 2*="">• Carcinogenic PAHs, BaP TEQ <lor=lor (35%)<br="" 2*="">• Total PAH (34%) RPD failed acceptance criteria due to sample heterogeneity</lor=lor></lor=lor></lor=0*>
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	Assessment of laboratory control standard has been undertaken by the laboratory. All laboratory control standards were within acceptable ranges.
Matrix Spikes	Matric spikes are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Assessment of matrix spikes has been undertaken by the laboratory. All laboratory control standards were within acceptable ranges with the exception of: • SE 272387.001 • Fluoranthene (146%) • Pyrene (158%) • Benzo(a)pyrene (154%) • Lead (40%) Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).

Task	Description	Project
Surrogate Spikes	Surrogate spikes provide a means of checking that no gross analyte loss occurred. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Assessment of surrogate spikes has been undertaken by the laboratory.
Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	Yes Further assessment of the investigation QA/QC is presented in the following sections.

Field QA/QC

Field QC Samples

The field (intra- / inter- laboratory) duplicate samples collected during the investigation are summarised in **Table K-2**. Inter-laboratory duplicates were analysed by the secondary laboratory, Envirolab.

Table K-2 Field QC Sampling Program

Matrix	Primary QA Sample	Duplicate (Primary Lab)	Triplicate (Secondary Lab)	Total Duplicates
Soil	BH107M_0.3-0.4	QD1_241010	QT1_241010	2
Groundwater	BH109M	QD_241017	QT_241017	2

Field QC Summary

Review of the field data quality indicators is presented in Table K-3 below.

Table K-3 Field Data Quality Indicators

QA Component	Data Quality Indicator(s)	Conformance
Accuracy – a quantitative	SOPs appropriate and complied with	Yes
measure of the closeness of reported data to the "true" value	Results for inter-laboratory (split field) duplicates acceptable	Yes
Precision – A quantitative	SOPs appropriate and complied with	Yes
measure of the variability (or reproducibility) of data	Results for intra-laboratory (blind field) duplicates acceptable	Yes
Completeness – A measure	Each critical location sampled	Yes
of the amount of useable data from a data collection activity	Samples collected at targeted locations and depth	Yes
	SAQP appropriate and complied with	Yes
	Experienced sampler	Yes
	Field documentation correct	Yes
Comparability – The	Same sampling method used on each occasion/location	Yes

QA Component	Data Quality Indicator(s)	Conformance
	Experienced sampler	Yes
	Same type of samples collected (filtered, size, fractions)	Yes
Representativeness – The	Appropriate media sampled according to SAQP	Yes
confidence (expressed qualitatively) that data are representative of each	Each media identified in SAQP sampled	Yes
medium present onsite	Appropriate sample collection methodologies, handling, storage and preservation techniques used	Yes

Conclusion for the Field QA/QC

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP, which were devised with reference to industryapproved guidelines. Appropriate QC measures were integrated into each sampling event and the DQIs were met.

All samples, including field QC samples, were transported to the primary and secondary laboratories under refrigerated conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. El considered the field QA/QC program carried out during the DSI to be appropriate.

Laboratory QA/QC

Laboratory Accreditation

Primary and intra-laboratory duplicate samples were analysed by SGS (located in Alexandria NSW), with inter-laboratory duplicate samples analysed by Envirolab (located in Chatswood NSW). All laboratories are accredited by NATA for the analyses undertaken.

Laboratory QC Summary

Review of the laboratory data quality indicators is presented in Table K-4 below.

DQI	Item	Conformance
Completeness	All critical samples analysed according to SAQP and proposal	Yes
A measure of the amount of useable data (expressed	All analytes analysed according to SAQP in proposal	Yes
as %) from a data collection activity	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
Comparability	Sample analytical methods used (including clean-up)	Yes
The confidence (expressed qualitatively) that data may	Sample PQLs (justify/ quantify if different)	Yes
be considered to be equivalent for each	Same laboratories (justify/ quantify if different)	Yes
sampling and analytical event	Same units (justify/ quantify if different)	Yes
Representativeness Confidence that data are	All key samples analysed according to SAQP in the proposal	Yes

Table K-4 Laboratory Data Quality Indicators

DQI	Item	Conformance
representative of each media		
Precision	Analysis of laboratory duplicates	Yes
A quantitative measure of the variability (or	Analysis of field duplicates	Yes
reproducibility) of data	Analysis of laboratory-prepared volatile trip spikes	Yes
Accuracy	Analysis of field blanks	Yes
A quantitative measure of the closeness of reported	Analysis of rinsate/ rinsate blanks	Yes
data to the true value	Analysis of method blanks	Yes
	Analysis of matrix spikes (MS)	Yes
	Analysis of surrogate spikes	Yes
	Analysis of reference materials	Not applicable
	Analysis of laboratory control samples	Yes

Conclusion for the Laboratory QA/QC

All contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQIs were met, or if not, the variability was suitably justified.

All final reports were submitted in full and included all requested analyses, as per the signed COC forms. El considered the laboratory QA/QC programs carried out during the DSI to be appropriate.

Summary of Project QA/QC

The sampling (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation were consistent with El protocols. The project DQOs specified in **Section 5.2**, **Table 5-1** were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the DSI were accurate, precise and representative of the site condition. It was therefore considered that the data were sufficiently precise and accurate and that the results could be used for DSI interpretative purposes.

Table K-5 Summary of Results for the Field QA/QC samples

u u			TRH				BTEX				Heavy Metals							
Sample identification	Sampled Date	Description	+- F	**2H	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Duplic	ate																	-
BH107M_0.3-0.4	10/10/2024	Soil	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	2	<0.3	8.2	53	2	<0.05	100	49
QD1_241010		Duplicate of BH107M_0.3-0.4	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	1	<0.3	8.6	42	4	< 0.05	82	45
	RPD (%	6)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	4.8	23.2	66.7	0.0	19.8	8.5
BH109M	17/10/2024	Groundwater	<50	84	<500	<500	<0.5	<0.5	<0.5	<1.5	20	0.2	<1	<1	<1	<0.1	27	63
QD_241017		Duplicate of BH109M	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	26	0.3	<1	<1	<1	<0.1	29	81
	RPD (%	6)	0.0	42.1	0.0	0.0	0.0	0.0	0.0	0.0	26.1	40.0	0.0	0.0	0.0	0.0	7.1	25.0
Inter-laboratory Dup	olicate																	
BH107M_0.3-0.4	10/10/2024	Soil	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	2	<0.3	8.2	53	2	<0.05	100	49
QT1_241010		Duplicate of BH107M_0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<4	<0.4	16	67	3	<0.1	100	42
	RPD (%	6)	0.0	NA	NA	NA	NA	NA	NA	NA	100.0	NA	64.5	23.3	40.0	NA	0.0	15.4
BH109M	17/10/2024	Groundwater	<50	84	<500	<500	<0.5	<0.5	<0.5	<1.5	20	0.2	<1	<1	<1	<0.1	27	63
QT_241017		Duplicate of BH109M	<10	<50	<100	<100	<1	<1	<1	<1.5	23	0.3	<1	1	<1	< 0.05	37	100
	RPD (%	6)	NA	62.4	NA	NA	NA	NA	NA	0.0	14.0	40.0	0.0	0.0	0.0	NA	31.3	45.4
Soil																		
QTB1		Trip blank	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
QTS1	10/10/2024	Trip spike	-	-	-	-	[94%]	[98%]	[99%]	[98%]	-	-	-	-	-	-	-	-
QR_241010		Rinsate	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
Groundwater																		-
GW_QTB1		Trip blank	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
GW_QTS1	17/10/2024	Trip spike	-	-	-	-	[101%]	[110%]	[98%]	[98%]	-	-	-	-	-	-	-	-
QR_241017		Rinsate	<50	93	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in $\mu\text{g/L}.$

 * - F1 is obtained by subtracting the sum of BTEX concentrations from the $C_{6}\text{-}C_{10}$ fraction

** - F2 is obtained by subtracting naphthalene from the > $\rm C_{10}\text{-}C_{16}$ fraction

Appendix L – Statistical Analysis

95% UCL Data Analysis - Fill materials

TRH-F2 Dataset

Sample	Concentration
BH101_0.1-0.2	<25
BH102_0.2-0.3	<25
BH103_0.1-0.2	<25
BH104_0.1-0.2	<25
BH105_0.2-0.3	<25
BH106_0.2-0.3	<25
BH107M_0.3-0.4	<25
BH108_0.2-0.3	<25
BH109M_0.2-0.3	<25
BH110_0.1-0.2	<25
BH111_0.1-0.2	170
BH112_0.1-0.2	<25
BH113M_0.1-0.2	<25

	A B C	DE	F	G H I J K	L
1			-	ensored Full Data Sets	_
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.2 25/10/2024 2	2:06:01 PM		
5	From File	TRH-F2			
6	Full Precision				
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	TRH-F2				
12					
13			General	Statistics	
14	Total	Number of Observations	13	Number of Distinct Observations	2
15				Number of Missing Observations	0
16		Minimum	25	Mean	36.15
17		Maximum	170	Median	25
18		SD	40.22	Std. Error of Mean	11.15
19		Coefficient of Variation	1.112	Skewness	3.606
20					
21			Normal C		
22		hapiro Wilk Test Statistic	0.311	Shapiro Wilk GOF Test	
23	1% S	hapiro Wilk Critical Value	0.814	Data Not Normal at 1% Significance Level	
24		Lilliefors Test Statistic	0.532	Lilliefors GOF Test	
25	1	% Lilliefors Critical Value	0.271	Data Not Normal at 1% Significance Level	
26		Data Not	Normal at 1	% Significance Level	
27					
28			suming Norr		
29	95% No	ormal UCL	F	95% UCLs (Adjusted for Skewness)	00.17
30		95% Student's-t UCL	56.03	95% Adjusted-CLT UCL (Chen-1995)	66.42
31				95% Modified-t UCL (Johnson-1978)	57.89
32			0		
33			Gamma		
34		A-D Test Statistic	4.552	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.742	Data Not Gamma Distributed at 5% Significance Leve	1
36		K-S Test Statistic	0.548	Kolmogorov-Smirnov Gamma GOF Test	1
37		5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Leve d at 5% Significance Level	
38		Data Not Gamm	ia Distribute		
39			Gamma	Statistics	
40		k hat (MLE)	2.411	k star (bias corrected MLE)	1.906
41		Theta hat (MLE)	14.99	Theta star (bias corrected MLE)	18.97
42		nu hat (MLE)	62.7	nu star (bias corrected MLE)	49.56
43	ι	E Mean (bias corrected)	36.15	MLE Sd (bias corrected)	26.19
44	IVI		50.15	Approximate Chi Square Value (0.05)	34.4
45	٨ مانينه	sted Level of Significance	0.0301	Adjusted Chi Square Value	32.6
46	Aujus		0.0001		52.0
47		٨٥٥	umina Com	ma Distribution	
48	ወይራ ህ	pproximate Gamma UCL	52.09	95% Adjusted Gamma UCL	54.96
49	5570 A		52.03		0-1.00
50			Lognormal	GOF Test	
51	Q	hapiro Wilk Test Statistic	0.311	Shapiro Wilk Lognormal GOF Test	
52			0.011		

	А	В	C	Shanir	D Wilk (Critica	E al Value	F 0.889	G		H Data Not		 normal :		J N% Signifi	Cance	K	L	
53			10 /0				Statistic	0.532											
54							al Value	0.215	Data Not Lognormal at 10% Significance Level										
55				070 Liii				0.215 Data Not Lognormal at 10% Significance Level											
56						Dau		giornarat		mua		•							
57								Lognorma	I Statistic	5									
58				Minim	num of	l oaae	ed Data	3.219							Mean of	f loaae	ed Data	3.366	
59		5.136	SD of logged Data								0.532								
60		0.100							02 0.		Ju Dulu	0.001							
61							Assi	iming Logno	rmal Distr	ribut	tion								
62						95%	H-UCL	46.41					90%	6 Ch	nebyshev	(MVU	F) UCI	47.98	
63			95%	Cheb	yshev (54.78							nebyshev	•	,	64.21	
64					-	<u> </u>	E) UCL	82.75					07.07				_, 562	↓1 .21	
65					yonev		L) 00L	02.70											
66						Nor	narame	tric Distribut	ion Free I	ICI	Statistics	2							
67							•	ot follow a D											
68											Saibadon								
69							Nonpar	ametric Dist	ribution F	ree	UCLs								
70					Q	5% CI		54.5	insution	100	0010			95	% BCA B	ootstra	an UCI	N/A	
71			95%	6 Stand			ap UCL	N/A							95% Boo		•	N/A	
72							ap UCL	N/A					95%	Pe	rcentile Bo			N/A	
73							d) UCL	69.62							yshev(Me		•	84.77	
74			97.5% C				-	105.8							yshev(Me			147.1	
75				,		, -	.,								.,	, .	-,		
76								Suggested	UCL to U	se									
77				9	5% Stu	ident's		56.03											
78																			
79 80		The ca	Iculated UC	Ls are	based	on as	sumptio	ons that the	data were	col	lected in a	a ran	dom and	d un	biased ma	anner.			
							•	ata were col											
81 82				If the			•	using judgm						i,					
82 82								statistician to											
83 84																			
85	Ν	lote: Sugge	stions regai	ding th	ne selec	ction c	of a 95%	UCL are pr	ovided to	help	o the user	to se	elect the	mo	st appropr	riate 9	5% UCI		
86		Recom	nmendation	s are ba	ased u	pon d	ata size	data distrib	ution, and	l ske	ewness us	sing i	results fr	om	simulation	n studi	es.		
87	Но	wever, simu	lations resu	ılts will	not co	ver all	Real W	orld data se	ts; for add	litior	nal insight	the	user may	y wa	ant to cons	sult a s	statistici	an.	
		-												-					
88																			